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1 About MORe 2024

The conference Model Reduction and Surrogate Modeling (MORe) merges activities of the two independent confe-
rence seriesMoRePaS and MODRED. PreviousMoRePaS editions were held in Münster (2009), Günzburg
(2012), Trieste (2015) and Nantes (2018). Previous MODRED editions were held in Berlin (2010), Magdeburg
(2013), Odense (2017), Graz (2019). Previous MORe editions were held in Berlin (2022).

1.1 Topics

The goal is to foster an international exchange of new concepts and ideas related to the following topics :
— Parametric model order reduction
— System-theoretic model reduction methods and frequency-domain methods
— Machine learning and model order reduction (in particular when data is sparse)
— Data-driven approaches and hybrid data and physics based model reduction
— Non-intrusive model order reduction
— Tensor methods
— Nonlinear Model Reduction (e.g. geometric approaches on manifolds)
— Kernel methods for nonlinear MOR
— Nonlinear Model Reduction (e.g. on manifolds)
— MOR for problems with poor Kolmogorov N-width decay (e.g. transport phenomena)
— Localized MOR and multi-scale problems
— Randomized methods
— High dimensional parameter spaces, reduction in parameter space, offline stage efficiency
— Dynamic, adaptive and on the fly reduced a approximations, error estimation
— MOR for uncertainty quantification
— Model reduction for optimization, control, inverse problems and data assimilation
— Structure-preserving and energy-based MOR (e.g. Hamiltonian or port-Hamiltonian systems)
— MOR for multiphysics/multiphase problems
— Model reduction for nonlinear bifurcating PDEs
— MOR for industrial applications and sustainable development
— Model order reduction for predictive digital twins
— Model reduction software and benchmarks

1.2 Venue

The conference will be held at the University of California San Diego at the:
Scripps Seaside Forum (Google Maps)
6610 Kennel Way
La Jolla, CA 92037, USA
Contact : more@sciencesconf.org
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1.3 Committees

Organizing committee

BORIS KRÄMER (University of California San Diego) bmkramer@ucsd.edu
MATTHIAS MORZFELD (University of California San Diego) matti@ucsd.edu
SERKAN GUGERCIN (Virginia Tech) gugercin@vt.edu

Executive Committee

SERKAN GUGERCIN (Virginia Tech), Chair
TOBIAS BREITEN (Technische Universität Berlin), Co-Chair
PETER BENNER (Max Planck Institute for Dynamics of Complex Technical Systems)
KAREN VEROY-GREPL (Eindhoven University of Technology)
MICHAEL HINZE (Universität Koblenz-Landau)
BORIS KRÄMER (University of California San Diego)
ANTHONY NOUY (Nantes Université)
MARIO OHLBERGER (University of Münster)
GIANLUIGI ROZZA (Scuola Internazionale Superiore di Studi Avanzati)
TATJANA STYKEL (Universität Augsburg)
KARSTEN URBAN (Ulm University)
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SERKAN GUGERCIN (Virginia Tech)
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1.4 Financial support

The event is financially supported by Akselos (akselos.com), ASML, Mitsubishi Electric Research Laboratories (merl.com),
and the Air Force Office of Scientific Research under Grant FA9550-24-1-0107 (PMs Dr. Fariba Fahroo and Dr. Frede-
rick Leve). Travel support for US-based students and early career researchers was provided by the National Science
Foundation Division of Civil, Mechanical and Manufacturing Innovation under Award No. 2347981 from the program
of Dynamics, Control and System Diagnostics.
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1.5 Social program

Welcome reception. The welcome reception takes place on Monday, September 9, 2024 from 4 :15–6 :15 pm
outside the conference venue.

Conference dinner. The conference dinner takes place on Wednesday, September 11, 2024 from 6:00–10:00 pm
at the La Jolla Shores Hotel 8110 Camino Del Oro, La Jolla, CA 92037. The first hour 6:00–7:00 pm will be a cock-
tail hour at the Shores Lawn of the hotel, and the dinner will be served buffet style from 7:00-9:00 pm at the Garden
Patio. The La Jolla Shores hotel can be reached from the conference venue by a 15 minute walk (0.7m/1km), a 4-
min drive (parking available for pay) and a limited shuttle service will run at 5:45pm, 6:00pm, 6:15pm and 6:30pm.

Coffee breaks. Coffee, soft drinks, pastries and fruits are served during the breaks outside the conference venue.

Lunch breaks. Catered lunch by UCSD Catering Services will be provided every day during the lunch break from
12:30 - 2:00pm, which is included in the registration fee.

1.6 Internet access

Participants have access if their home university is part of the eduroam network. In this case, use your account
information from your home university.

1.7 Speaker information

The scheduled time for oral presentations is 20 minutes and includes questions, answers and change of speakers.
We will provide laser pointers for presentations and encourage the speakers to use their own laptops to avoid transfer
and software issues. We strongly advise test your presentation and connection during the break before your talk in
order to avoid delays between presentations and technical difficulties.
Technical assistance will be present in the lecture rooms 20 minutes before the start of your session.

1.8 Code of Conduct

This event is supported all or in part by the NSF under Award No. 2347981 from the program of Dynamics, Control
and System Diagnostics and is governed by the NSF PAPPG which became effective January 30, 2023. Note that
Chapter II.F.9 of this guide requires that we provide all event participants with information on the University’s policy
on sexual harassment, other forms of harassment and sexual assault as well as information about how to report any
violations of such policy. For purposes of this requirement, “other forms of harassment” is defined as “Non-gender
or non-sex-based harassment of individuals protected under federal civil rights laws, as set forth in organizational
policies or codes of conduct, statutes, regulations, or executive orders.”

The University of California is committed to creating and maintaining a community dedicated to the advancement,
application, and transmission of knowledge and creative endeavors through academic excellence, where all indivi-
duals who participate in University programs and activities can work and learn together in an atmosphere free of
harassment, exploitation, or intimidation.

The University has policies, which prohibit discrimination, harassment, and sexual violence and address how to re-
port such violations. These policies include the University of California Policy on Discrimination, Harassment, and
Affirmative Action in the Workplace, the University of California Policy on Sexual Violence and Sexual Harassment
and the UC San Diego Procedures for Discrimination and Harassment Complaint Resolution. These policies cover
admission, employment, access, and treatment in University programs and activities.

The UC Policy on Sexual Violence and Sexual Harassment addresses sexual violence, sexual harassment, and retalia-
tion (“Prohibited Conduct”). This Policy outlines the University’s responsibilities and procedures related to Prohibited
Conduct in order to ensure an equitable and inclusive education and employment environment free of sexual violence

4

https://policy.ucop.edu/doc/4000376/DiscHarassAffirmAction
https://policy.ucop.edu/doc/4000376/DiscHarassAffirmAction
https://policy.ucop.edu/doc/4000385/SVSH
https://adminrecords.ucsd.edu/PPM/docs/200-23.html


and sexual harassment. UC San Diego Guidelines cover discrimination and harassment on the basis of race, color,
national origin, religion, sex, gender, gender expression, gender identity, gender transition status, pregnancy, physi-
cal or mental disability, medical condition (cancer-related or genetic characteristics), genetic information (including
family medical history), ancestry, marital status, age, sexual orientation, citizenship, or service in the uniformed ser-
vices. The Policies applies to all University faculty, staff, and students (undergraduates, graduates, and professional
students), and third parties.

The Policy applies at all University campuses, University programs and activities, the Lawrence Berkeley National
Laboratory, Medical Centers, the Office of the President, and Agriculture and Natural Resources.

The full text of the Policy can be reviewed on the UCSD Sexual Violence Prevention & Response website or the UC
Office of the President website. UCI will respond promptly and effectively to reports of Prohibited Conduct and will
take appropriate action to prevent, stop, and remedy conduct violates the Policy.

Confidential resources, including CARE at the Sexual Assault Resource Center, are available to those who have ex-
perienced sexual harassment or sexual violence. CARE is on-call 24 hours a day and on weekends throughout the
year. Those in need of urgent support during non-business hours, weekends, or holidays, may reach CARE at (858)
534-5793. A survivor can make use of confidential resources at any time, regardless of whether the event has been
reported to the Title IX office or other authorities. For more information about UCSD CARE and other support services
at UC San Diego, see the CARE at SARC website.

Any person may report incidents of sexual harassment, discrimination or sexual violence to the campus Title IX office,
which is named The Office for the Prevention of Harassment and Discrimination (OPHD). Contact OPHD by visiting
https://ophd.ucsd.edu/ or by calling (858) 534-8298.

Reports to law enforcement can be made to UC San Diego Police Department for on-campus incidents or to the
local department where the crime occurred. A confidential advocate from the UCSD CARE Office or UCSD Police
Department staff can help determine which police department to contact. In an emergency, dial 911, or call (858)
534-HELP (4357) to reach the non-emergency phone. Reports to the UCSD Police Department can be made in person
at the Campus Services Complex, Building B (map).
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2 Program

Monday, September 9

Time Event
8 : 45 - 9 : 00 Opening Remarks
9 : 00 - 9 : 10 Opening Remarks : Dean Al Pisano
9 : 10 - 10 : 00 Plenary 1 (Chair : Serkan Gugercin)

· Nicole Aretz – Exploiting structure via nested operator inference in physics-based learning

10 : 00 - 10 : 40 Session 1 : Nonlinear MOR (Chair : Serkan Gugercin)
· Paul Schwerdtner – Greedy construction of quadratic manifolds for nonlinear dimensionality reduction and nonlinear

model reduction

· Moritz Feuerle – Model reduction for the wave equation beyond the limitations of the Kolmogorov N-width

10 : 40 - 11 : 10 Coffee
11 : 10 - 12 : 30 Session 2 : Nonlinear MOR (Chair : Boris Kramer)

· Samuel Otto – On the role and computation of the fiber in model reduction

· Charles Beall – Randomized local model order reduction for p-Laplacian problems

· Alejandro Diaz – Domain decomposition least-squares Petrov-Galerkin model reduction for time-dependent problems

· Christopher Wentland – Accelerated simulation of advection-dominated flows with automated multifidelity modeling

and domain decomposition

12 : 30 - 14 : 00 Lunch
14 : 00 - 14 : 50 Plenary 2 (Chair : Ionut Farcas)

· Youngsoo Choi – Latent space dynamics identification

14 : 50 - 16 : 10 Session 3 : Adaptive MOR (Chair : Ionut Farcas)
· Sridhar Chellappa – Tensor-based adaptive sampling strategies for the reduced basis method with application to

full-state approximation

· Robert Van Heyningen – Adaptive reduced-order models for high-speed flow via optimally transported meshes

· Jonathan Cangelosi – An adaptive surrogate model refinement framework for trajectory simulation and optimization

· Xianmin Xu – Transformed model reduction for partial differential equations with sharp inner layers

16 : 15 - 18 : 15 Welcome Reception

6



Tuesday, September 10

Time Event
8 : 30 - 9 : 20 Plenary 3 (Chair : Tobias Breiten)

· Tamara Kolda – Tensor decomposition meets reproducing kernel Hilbert spaces

9 : 20 - 10 : 40 Session 4 : System-theoretic Model Reduction (Chair : Tobias Breiten)
· Thanos Antoulas – The Loewner framework for parametric systems and the curse of dimensionality. Part I : Theory

· Ion Victor Gosea – The Loewner framework for parametric systems and the curse of dimensionality. Part II : Appli-

cations

· Petar Mlinaríc – Riemannian optimization over the manifold of rational functions

· Mattia Manucci – Certified model order reduction for large-scale switched differential-algebraic equations

10 : 40 - 11 : 10 Coffee
11 : 10 - 12 : 30 Session 5 : System-theoretic Model Reduction (Chair : Christopher Beattie)

· Nicholas Corbin – Progress towards scalable nonlinear balancing algorithms

· Tobias Breiten – Nonlinear balanced truncation via infinite-dimensional Koopman lifting

· Reetish Padhi – Balanced truncation for bilinear systems with quadratic outputs

· Sean Reiter – Interpolatory H2 model order reduction of linear systems with quadratic output functions

12 : 30 - 14 : 00 Lunch
14 : 00 - 15 : 20 Session 6 : Structure-preserving Model Reduction (Chair : Benjamin Unger)

· Robin Klein – Entropy-stable non-linear manifold ROMs for hyperbolic conservation laws

· Gruber Anthony – Flexible and variationally consistent Hamiltonian model reduction

· Harsh Sharma – Lagrangian operator inference enhanced with structure-preserving machine learning for nonintru-

sive model reduction of mechanical systems

· Jonas Nicodemus – Learning passive dynamical systems via spectral factorization

15 : 20 - 16 : 20 Posters & Coffee
· Steffen W. R. Werner – Model reduction of large-scale sparse systems in MATLAB and octave with the MORLAB

toolbox

· Sam Bender – Reduction of periodic systems with partial floquet transforms

· Robin Herkert – Randomized symplectic model order reduction for Hamiltonian systems

· Ray Qu – Entropy stable reduced order modeling of nonlinear conservation laws using discontinuous Galerkin me-

thods

· Albani Olivieri – Discovering quadratic representations of PDEs : Algorithms and software

· Opal Issan – Conservative reduced order modeling of the plasma kinetic equations

· Yingda Cheng – Robust implicit adaptive low rank time-stepping methods for matrix differential equations

· Alessandro Alla, Agnese Pacifico – An online algorithm to identify and control unknown partial differential equations

· Martin Alexander Reinhold – Model order reduction for parabolic PDE constrained optimization in a space time

variational setting

· Sebastiaan Van Schie – Parametric proper orthogonal decomposition approaches for high-dimensional design opti-

mization problems

· Jannis Marquardt – Optimal control based reformulation of a data assimilation problem as a new approach for

applying model order reduction methods

· Julie Pham – Real-time aerodynamic load estimation for hypersonics via strain-based inverse maps

· Francisco-Javier Granados-Ortiz – Surrogate model generation in CFD with Machine Learning-Aided Design Opti-

mization Method (MLADO)

· Yilin Zhuang – Physically consistent score-based diffusion models for PDE-based inverse problems

16 : 20 - 17 : 40 Session 7 : Structure-preserving Model Reduction (Chair : Steffen Werner)
· Johannes Rettberg – Data-driven identification of reduced port-Hamiltonian systems

· Riccardo Morandin – Structure-preserving model order reduction of linear time-varying port-Hamiltonian systems

· Benjamin Unger – Beyond linear - a differential geometric framework for nonlinear projections

· Silke Glas – Structure-preserving model reduction : From the formulation on manifolds to data-driven realizations
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Wednesday, September 11

Time Event
8 : 30 - 9 : 20 Plenary 4 (Chair : Mario Ohlberger)

· Tommaso Taddei – Registration in bounded domains for model reduction of parametric conservation laws

9 : 20 - 10 : 40 Session 8 : Parametric MOR (Chair : Mario Ohlberger)
· Filip Belik – Greedy frequency domain model reduction for parametric systems : New theory and algorithms

· Karim Cherifi – Snapshot-based modeling of parametric linear systems

· Niklas Reich – A parallel batch greedy algorithm in reduced basis methods : Convergence rates and numerical results

· Chenzi Wang, Page Yu – An iterative active subspace approach for model order reduction of parametric systems with

high-dimensional parameter spaces

10 : 40 - 11 : 10 Coffee
11 : 10 - 12 : 30 Session 9 : Nonintrusive ROMs (not ML) (Chair : Silke Glas)

· Mario Ohlberger – Multi-fidelity learning of reduced order models

· Andrea Manzoni – Multi-fidelity reduced-order surrogate modelling

· Shane McQuarrie – Learning Bayesian reduced-order operators with Gaussian processes

· Mai Peng – Building dynamical stability into data-driven quadratic ROMs

12 : 30 - 14 : 00 Lunch
14 : 00 - 15 : 20 Session 10 : Nonintrusive ROMs (not ML) (Chair : Mario Ohlberger)

· Antonio Carlucci – Data-driven approximation of linear switched systems

· Ionut Farcas – Distributed computing for physics-based data-driven reduced modeling at scale

· Tomoki Koike – Stability guarantees of non-intrusive data-driven model reduction for nonlinear systems

· Hannah Lu – Data-driven models of nonautonomous systems

15 : 20 - 16 : 20 Posters & Coffee
· Nuojin Cheng – Stochastic subspace descent with surrogate-adjusted line search

· Sandeep Reddy Bukka – Physics-informed neural networks assisted operator inference framework for noisy data

· John Rekoske – Rapid 3D Green’s functions using reduced-order models of physics-based seismic wave propagation

simulations

· Dimitrios Xylogiannis – Construction of nonlinear models from input-output data for atmospheric pollution simulations

· Benjamin Zastrow – Data-driven model reduction via block-structured operator inference for coupled aeroelastic flutter

· Dave May – Non-intrusive reduced order models for geophysics applications : Adaptive sampling for the small data

regime

· Cankat Tilki – Wavelet-based dynamic mode decomposition in the context of extended dynamic mode decomposition

and Koopman theory

· Vignesh Sella – Surrogate modeling for data-scarce applications using projection-based multifidelity linear regression

· Ion Victor Gosea – Reduced-order modeling as a catalyst and enabler for digital twinning in process and chemical

engineering

· Steven Rodriguez – Enabling model reduction of meshless nonlocal methods via modal reference spaces

· Hossein Naderi – Oblique projection for scalable rank-adaptive reduced-order modeling of nonlinear stochastic PDEs

with time-dependent bases

· Marissa Whitby – Randomized local model order reduction for nonlinear partial differential equations

· Noé Stauffer – Extracting Markovian description of high-dimensional dynamics via Mori-Zwanzig formalism

· Amirpasha Hedayat – Linear and non-linear reduced dimensional manifolds for global weather predictions

16 : 20 - 17 : 40 Session 11 : Nonintrusive ROMs (not ML) (Chair : Alessandro Alla)
· Tommaso Bradde – A novel approach for characterizing and enforcing stability of barycentric rational models in the

AAA algorithm

· Linus Balicki – Parametric reduced-order modeling via low-rank barycentric forms and the p-AAA algorithm

· Michael Ackermann – Optimal H2 approximation from time-domain data

· Masayuki Yano – Model reduction for parametrized aerodynamics problems : Error estimation, adaptivity, and nonli-

near approximations
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Thursday, September 12

Time Event
8 : 30 - 9 : 20 Plenary 5 (Chair : Benjamin Peherstorfer)

· Kevin Carlberg – Nonlinear model reduction for high- and low-consequence applications

9 : 20 - 10 : 40 Session 12 : ML (Chair : Benjamin Peherstorfer)
· Jules Berman – CoLoRA : Continuous low-rank adaptation for reduced implicit neural modeling of parameterized

partial differential equations

· Mariella Kast – Time-evolving neural network representations for the reduced order modelling of parametrised PDEs

· Daniel Alford-Lago – A generative probabilistic transformer model for ionospheric prediction

· Chris Curtis – Time stepping in DMD via machine learning

10 : 40 - 11 : 10 Coffee
11 : 10 - 12 : 30 Session 13 : ML (Chair : Gianluigi Rozza)

· Christophe Bonneville – Accelerating phase field simulations through time extrapolation with adaptive Fourier neural

operators and U-Nets

· Lukas Renelt – Efficient linear model order reduction for Friedrichs’ systems

· Weichao Li, Shaowu Pan – Implicit neural representation meets interpretable parameterized reduced-order modeling

· Peter Benner – Transformer networks accurately predict outputs of parametric dynamical systems with time-varying

external inputs

12 : 30 - 14 : 00 Lunch
14 : 00 - 15 : 20 Session 14 : ML (Chair : Serkan Gugercin)

· Gianluigi Rozza – Enhancing ROM with DL for the efficient solution of parametric PDEs : applications and perspectives

· Lewin Ernst – Certification of physics-informed neural networks for the solution of parameterized PDEs

· Bernard Haasdonk – Kernel-based greedy collocation schemes for approximation of high-dimensional PDE boundary

value problems

· Marco Tezzele – Predictive digital twins of civil engineering structures

15 : 20 - 16 : 20 Posters & Coffee
· Xuping Xie – ML based surrogate modeling for collisional radiative model in plasma disruption mitigation

· Shuwen Sun – Predicting dynamics in time and parameter space with deep learning and data augmentation

· Ramzi Dakhmouche – Wasserstein-robust modeling of multi-scale systems : a graph-neural-network coreset approach

· Otto Lamminpää – Forward model emulator for atmospheric radiative transfer using Gaussian processes and cross

validation

· Birgit Hillebrecht – An application of a posteriori error quantification for physics-informed neural networks

· Stefania Fresca – Neural latent dynamics models

· Sandeep Reddy Bukka – Physics-informed machine learning for surrogate modeling of ultrasonic guided wave propa-

gation in pipeline health monitoring

· Caterina Millevoi – SurMoDeL : A deep learning based surrogate model for modeling fault activation

· Jonas Kneifl – VENI, VINDy, VICI : A variational method to build ROMs with embedded uncertainty quantification

· Teeratorn Kadeethum – Integrating improved neural operators and graph convolutional networks for scalable geological

carbon storage modeling

· Satoru Iwasaki – Surrogate model for partial differential equations in thin domains

· Gabrielle Hobson – Physics-based uncertainty quantification for geophysical problems using data-driven reduced order

modeling

· Aniket Jivani – Propagation of uncertainties in data-driven learning of ODEs

· Amir Sagiv – Measure transport and density estimation via surrogate models

16 : 20 - 18 : 00 Session 15 : Stochastic ROMs and Randomized Methods (Chair : Bernard Haasdonk)
· Oliver Schmidt – A stochastic convolutional SPOD-Koopman reduced order model for turbulent flow data

· Peter Frame – Model reduction for linear systems using SPOD modes

· Kevin Lin – Mori-Zwanzig formalism, Wiener projections, and random dynamics

· Hossein Gorji – Schrodinger bridge model-data adaptation for network dynamics
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Friday, September 13

Time Event
8 : 30 - 9 : 20 Plenary 6 (Chair : Peter Benner)

· Francesca Bonizzoni – A greedy MOR method for the tracking of eigensolutions to parametric elliptic PDEs

9 : 20 - 10 : 40 Session 16 : Optimization, Control and Inverse Problems (Chair : Peter Benner)
· Dane Grundvig – Line-search based optimization with online model reduction

· Steffen W. R. Werner – An adaptive data sampling scheme for low-dimensional controller inference

· Tea Vojkovic – Forced Stuart-Landau models for closed-loop flow control

· Michael Kartmann – Adaptive reduced basis trust region methods for parameter identification problems

10 : 40 - 11 : 10 Coffee
11 : 10 - 12 : 30 Session 17 : Optimization, Control and Inverse Problems (Chair : Matthias Morzfeld)

· Tia Chung, Jack Michael Solomon – Paired autoencoders for inversion and regularization with sparsity

· Abed Hammoud – Data assimilation in chaotic systems using deep reinforcement learning

· Pavlos Stavrinides – Faster solution of linear Bayesian smoothing problems using model reduction for ensemble

Kalman inversion

· Lianghao Cao – Efficient geometric MCMC for nonlinear Bayesian inversion enabled by derivative-informed neural

operator

12 : 30 - 14 : 00 Lunch
14 : 00 - 15 : 20 Session 18 : UQ and Tensor Methods (Chair : Elizabeth Qian)

· Thomas Coons – Adaptive covariance estimation via surrogate modeling for multi-fidelity estimation

· Ruben Aylwin – Reduced basis methods for domain uncertainty quantification of periodic gratings

· Patrick Blonigan, Eric Parish – A streamlined workflow for model reduction with application to aerodynamic and

thermal analyses

· Ye Lu – Extended tensor decomposition model reduction method : application to real-time additive manufacturing

residual stress predictions and inverse problems

15 : 20 - 15 : 25 Closing Remarks
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3 Talk Abstracts

3.1 Monday, September 9

Nicole Aretz, University of Texas at Austin (9 : 10 - 10 : 00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Nicole Aretz – Exploiting structure via nested operator inference in physics-based learning

Paul Schwerdtner, Courant Institute of Mathematical Sciences [New York] (10 : 00 - 10 : 20) . . . . . . . . . . . . . . . 13
Paul Schwerdtner – Greedy construction of quadratic manifolds for nonlinear dimensionality reduction and nonlinear
model reduction

Moritz Feuerle, Ulm University (10 : 20 - 10 : 40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Moritz Feuerle – Model reduction for the wave equation beyond the limitations of the Kolmogorov N-width

Samuel Otto, University of Washington (11 : 10 - 11 : 30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Samuel Otto – On the role and computation of the fiber in model reduction

Charles Beall, Stevens Institute of Technology (11 : 30 - 11 : 50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Charles Beall – Randomized local model order reduction for p-Laplacian problems

Alejandro Diaz, Rice University (11 : 50 - 12 : 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Alejandro Diaz – Domain decomposition least-squares Petrov-Galerkin model reduction for time-dependent problems

Christopher Wentland, Sandia National Lab (12 : 10 - 12 : 30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Christopher Wentland – Accelerated simulation of advection-dominated flows with automated multifidelity modeling and
domain decomposition

Youngsoo Choi, Lawrence Livermore National Laboratories (14 : 00 - 14 : 50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Youngsoo Choi – Latent space dynamics identification

Sridhar Chellappa, Max Planck Institute for Dynamics of Complex Technical Systems (14 : 50 - 15 : 10) . . . .20
Sridhar Chellappa – Tensor-based adaptive sampling strategies for the reduced basis method with application to full-state
approximation

Robert Van Heyningen, MIT (15 : 10 - 15 : 30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Robert Van Heyningen – Adaptive reduced-order models for high-speed flow via optimally transported meshes

Jonathan Cangelosi, Rice University (15 : 30 - 15 : 50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Jonathan Cangelosi – An adaptive surrogate model refinement framework for trajectory simulation and optimization

Xianmin Xu, Institute of Computational Mathematics, Chinese Academy of Sciences (15 : 50 - 16 : 10) . . . . .23
Xianmin Xu – Transformed model reduction for partial differential equations with sharp inner layers
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Exploiting Structure via Nested Operator Inference in
Physics-Based Learning

Nicole Aretz1 and Karen Willcox1

1Oden Institute for Computational Engineering & Sciences, University of Texas at Austin

We introduce the data-driven nested Operator Inference method [1] for learning projection-based
reduced-order models (ROMs) from snapshot data of high-dimensional dynamical systems. Projection-
based ROMs exploit the intrinsic low-dimensionality of a full-order solution manifold. They typically 1)
achieve significant computational savings, 2) guarantee approximation accuracy through established
error theory, and 3) remain interpretable through the governing equations. However, constructing
ROMs via projection requires access to the full-order operators – a significant shortcoming for ap-
plications with legacy codes or commercial solvers. Operator Inference (OpInf) [3] circumvents this
requirement by learning the intrusive ROM from available full-order data and the structure of the
governing equations. Under certain conditions [2, 3], OpInf guarantees the exact reconstruction of
the intrusive ROM, though meeting its data requirements in practice can be challenging, especially
for highly non-linear operators: The degrees of freedom in the classic OpInf regression problem scale
in O(rp), where r is the dimension of the reduced space, and p is the highest polynomial degree in
the governing equations. Consequently, classic OpInf requires precise regularization, balancing the
numerical stability of its learning problem and the structural stability of its inferred ROM [4]. In
contrast, our nested OpInf approach [1] partitions the learning problem into multiple regression prob-
lems, each with only O(p) degrees of freedom. Each regression problem is provably better conditioned
than when all reduced-order operators are learned together, thus alleviating the need for additional
regularization. The partition is based upon a nested structure in the projection-based reduced-order
matrices. It exploits a hierarchy in the reduced space’s basis vectors to guarantee that the ROM’s
dominant dynamics are learned accurately. Since only O(p) unknowns are learned at a time, nested
OpInf is particularly applicable to higher-order polynomial systems. We demonstrate our method for
the shallow ice equations with eighth-order polynomial operators.
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Greedy construction of quadratic manifolds for nonlinear
dimensionality reduction and nonlinear model reduction

Paul Schwerdtner1 and Benjamin Peherstorfer1

1Courant Institute of Mathematical Sciences, New York University

Dimensionality reduction with quadratic manifolds augments linear approximations in subspaces
with quadratic correction terms. While previous works [1, 2] rely on linear approximations given
by projections onto the first few leading principal components of the training data, we instead con-
struct subspaces so that the corresponding linear approximations can be corrected most efficiently with
quadratic terms.

We propose in [3] a greedy method for the subspace construction that selects basis vectors from
leading as well as later principal components. The greedy selection allows us to determine a basis
that can leverage the quadratic corrections most efficiently. This is in contrast to choosing as basis
the leading principle components, which results in the best linear approximation but is not necessarily
most informative for the quadratic correction terms.

Properties of the greedily constructed manifold allow applying linear algebra reformulations so
that the greedy method scales to data points with millions of dimensions. Numerical experiments
demonstrate that an orders of magnitude higher accuracy is achieved with the greedily constructed
quadratic manifolds compared to manifolds that are based on the leading principal components.
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Figure 1: The proposed greedy approach leads to eight orders of magnitude more accurate approxi-
mations than using the leading principal components (PC) for the quadratic manifold construction in
this 2D wave propagation problem.
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Model Reduction for the Wave Equation beyond the limitations of
the Kolmogorov N -width

M. Feuerle1, R. Löscher2, O. Steinbach2, and K. Urban1

1Institute for Numerical Mathematics, Ulm University, Germany
2Institute of Applied Mathematics, Graz University of Technology, Austria

The Reduced Basis Method (RBM) is a well-established model reduction technique to realize multi-
query and/or realtime applications of Parameterized partial differential equations (PPDEs). The RBM
relies on a well-posed variational formulation of the PPDE under consideration. Since the RBM is a
linear approximation method, the best possible rate of convergence is given by the KolmogorovN -width

dN (P) := inf
XN⊆X,

dim(XN )=N

sup
µ∈P

inf
vN∈XN

∥uµ − vN∥X , N ∈ N, (1)

where X is the function space in which the solution uµ ∈ X is sought, P ⊂ RP is the set of parameters
and N denotes the dimension of the reduced ansatz space XN . It is well-known that the decay of dN (P)
is exponentially fast for suitable elliptic and parabolic problems [1, 2], but is poor for transport- or
wave-type problems [4, 6]. This motivates our goal of developing a well-posed variational formulation
for the wave equation, which also allows for a nonlinear model reduction in order to overcome the
limitations of a possibly poor Kolmogorov N -width.
To this end, we consider an abstract formulation of the parameterized wave equation of the form

Bµ : X → Y ′, fµ ∈ Y ′, seek uµ ∈ X s.t. Bµuµ = fµ. (2)

In order to avoid a linear approximation process, we consider a parameter-dependent norm on X
defined by ∥ · ∥µ := ∥Bµ · ∥Y ′ . As this norm might not be meaningful from an application point of
view, we show, that ∥ · ∥L2 ≲ ∥ · ∥µ. Using a parameter dependent norm on X (and not on Y ) is a
key difference of our approach compared to existing ones in the literature (see e.g. [3] for the transport
problem) and leads to a nonlinear approximation scheme.
We start by showing well-posedness for the wave equation by constructing appropriate spaces X and
Y . Moreover, we introduce an unconditionally stable space-time Petrov-Galerkin discretization based
upon a modified Hilbert type transformation as in [5]. This discretization is then used as a “truth”
solver for an RBM. Numerical experiments will be presented.
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On the Role and Computation of the Fiber in Model Reduction

Samuel E. Otto1, Steven L. Brunton1, and J. Nathan Kutz1

1AI Institute in Dynamic Systems, University of Washington, Seattle, WA

Recent advances enable accurate forecasting of nonlinear dynamical systems on low-dimensional
curved manifolds learned from data [1, 3, 2]. The use of curved manifolds has proven critical in appli-
cations to high Reynolds number fluid flows where advecting flow structures are poorly approximated
in low-dimensional (flat) subspaces [4, 3]. We show that choices of low-dimensional modeling variables
that faithfully embed the underlying manifold can still lead to poor forecasting performance when
states are condensed along fibers that fail to properly account for fast dynamics and transient am-
plification mechanisms associated with non-normality [6, 5]. To illustrate, we consider a non-parallel
complex Ginzburg-Landau equation in a regime following a supercritical Hopf bifurcation. We project
onto the unstable manifold and compare various choices for the projection fiber. We show that accu-
rate models can be obtained by removing the most quickly decaying eigenmodes, which are orthogonal
to the most slowly decaying left eigenvectors. For systems in regimes far away from relevant equilib-
ria, low-dimensional variables with guaranteed forecasting ability can be extracted using the recently
introduced Covariance Balancing Reduction using Adjoint Snapshots (CoBRAS) method and its non-
linear kernel-based variant [6]. We demonstrate this approach on a nonlinear axisymmetric jet flow
discretized with 100, 000 state variables. This flow exhibits selective sensitivity to disturbances en-
tering upstream in the shear layer, while the resulting instabilities grow large downstream. Standard
data-driven methods such as those based on Proper Orthogonal Decomposition (POD) fail to capture
the upstream flow features needed to forecast the system’s response, while methods based on linearized
analysis or low-order Volterra series expansions fail due to the rapid departure of trajectories from the
neighborhood of the equilibrium where these approximations are valid. A common feature of successful
methods based on left eigenvectors or CoBRAS is the reliance on adjoint-based sensitivity analysis. In
the absence of additional physics-based knowledge providing implicit or explicit information about sen-
sitivity, we explain why the adjoint is required to overcome the curse of dimensionality when selecting
modeling variables.
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Randomized Local Model Order Reduction for p-Laplacian
Problems

C. Beall1 and K. Smetana1

1Stevens Institute of Technology

We seek to develop a randomized local model order reduction (MOR) method to numerically solve
boundary value problems involving the p-Laplace equation

−div(|∇u|p−2∇u) = f,

with 2 < p < ∞, a model nonlinear elliptic PDE. We build on previous works [1], [2] which have
developed local, and randomized local, MOR in the linear elliptic setting. On a global bounded
Lipschitz domain Ω ⊂ Rn, n = {1, 2, 3}, we obtain local p-harmonic solutions on oversampling domains
ω∗ ⊂ Ω with boundary denoted ∂ω∗, and introduce a so-called transfer operator restricting solutions
on ω∗ to a target subdomain ω ⊂ ω∗ on which we construct local ansatz basis functions for the MOR
scheme. However, care must be taken when considering the optimality of the space spanned by such
basis functions. Here, our transfer operator corresponds to a nonlinear PDE, so the linear theory,
which states that the space spanned by the leading left singular vectors of a linear transfer operator
is optimal in the sense of Kolmogorov [3], no longer applies. Caccioppoli’s inequality was crucial in
proving compactness of linear transfer operators in [1], [2], and this inequality also applies to the p-
Laplacian (proven in e.g., [4]). If we can prove compactness in this setting, it then follows that the
range of our transfer operator acting on a bounded set of functions on ∂ω∗ is a compact set. An
optimal subspace can thus be defined as the subspace that optimally approximates this compact set,
and a standard POD or Greedy algorithm can be employed to obtain reduced solutions. Since such
algorithms suffer from the curse of dimensionality, we will rely on randomization and seek to exploit
the concentration of measure phenomenon.

.
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Domain decomposition least-squares Petrov-Galerkin model
reduction for time-dependent problems

Alejandro N. Diaz1

1Rice University

This presentation extends domain decomposition (DD) least-squares Petrov-Galerkin (LSPG) model
reduction to time-dependent problems using linear subspace reduced order models (LS-ROMs) or
neural network-based nonlinear-manifold ROMs (NM-ROMs). The DD LSPG approach algebraically
decomposes a fully discretized full order model (FOM) into algebraic subdomains, computes a ROM
for each subdomain, and minimizes the least-squares residual for each subdomain ROM at each time
step while coupling the ROMs via compatibility constraints. For both LS-ROMs and NM-ROMs,
applying DD has several advantages over computing a global ROM: subdomain ROMs can be trained in
parallel, require smaller subdomain FOM-dimensional training data, and can be tailored to subdomain-
specific features of the FOM. However, in the time-dependent setting, the compatibility constraints and
reduced order representations must be carefully constructed to ensure compatibility throughout the
time domain. To accomplish this, we compute so-called port ROMs and strongly enforce subdomain
compatibility of the reconstructed ROM solution. The effectiveness of the time-dependent DD LSPG
ROM approach using LS-ROMs and NM-ROMs is demonstrated using the 2D Burgers’ equation in
the advection-dominated regime.
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Accelerated Simulation of Advection-dominated Flows with
Automated Multifidelity Modeling and Domain Decomposition

Christopher R. Wentland1, Francesco Rizzi2, and Irina K. Tezaur1

1Sandia National Laboratories
2NexGen Analytics

Surrogate modeling is a crucial component of the modern engineer’s toolbox for designing and ana-
lyzing physical systems of practical interest, shortening delivery times and decreasing life cycle costs.
In the past decade, a host of data-driven surrogate models have proposed low-cost solutions rooted
in experimental or high-fidelity simulation datasets, offering enticing alternatives to more traditional
heuristic surrogates. Each has unique benefits and drawbacks, attempting to balance accuracy, gener-
alizability, flexibility, training time, and inference cost. Choosing an appropriate model for a specific
system is often the result of domain expert experience and trial-and-error. This is a particular issue
for systems which are characterized by non-linear governing physics, a complex parameter space, and
spatially-distributed and/or transient dynamics. Unsteady advection-dominated fluid flows experienc-
ing propagating waves are prime examples of such systems for which effective data-driven surrogate
modeling remains an open problem.
To overcome these issues, we propose a multifidelity modeling framework which automates the model
selection process and tailors the solution to a problem’s spatial dynamics. This is achieved by a novel
combination of the Schwarz alternating method and automated learning algorithms. The Schwarz
method allows for the decomposition of a spatial domain into arbitrary component subdomains and
the communication of information between subdomains, each potentially described by vastly different
mesh topologies and time integrators. The solution in each subdomain may be characterized by much
simpler, localized dynamics, and hence more easily modeled and solved. An automated learning al-
gorithm is leveraged to select both an optimal decomposition of the spatial domain and what model
to apply in each region, choosing among a high-fidelity model, intrusive reduced-order models, and
non-intrusive surrogates to achieve an accurate and inexpensive solution. This procedure is demon-
strated for advection-dominated fluid flow problems for which monolithic approaches are prohibitively
expensive or grossly inaccurate.
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Latent Space Dynamics Identification

Y. Choi1

1Lawrence Livermore National Laboratory

This talk introduces a framework called Latent Space Dynamics Identification (LaSDI), which has
significant potential for extension to other innovative data-driven algorithms. LaSDI is an interpretable,
data-driven framework that operates through three key steps: compression, dynamics identification,
and prediction [3, 4, 7, 6]. In the compression phase, high-dimensional data is reduced, allowing it to be
more easily integrated into an interpretable model. The dynamics identification phase then derives this
model, typically in the form of parameterized differential equations that accurately represent the re-
duced latent space data . During the prediction phase, these identified differential equations are solved
in the reduced space for new parameter points, with the solutions subsequently projected back into
the full space. A key advantage of the LaSDI framework is its efficiency, as the prediction phase oper-
ates without involving the full-order model size. The LaSDI framework supports various identification
methods, including fixed forms such as dynamic mode decomposition [1] and thermodynamics-based
LaSDI [6], regression forms like sparse identification of nonlinear dynamics (SINDy) and weak SINDy,
and physics-driven forms such as projection-based reduced order models [5, 2]. The LaSDI family has
been successfully applied to accelerate various physics problems, achieving up to 1000x speed-ups in
areas such as kinetic plasma simulations, pore collapse, and computational fluid dynamics.
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Tensor-based adaptive sampling strategies for the reduced basis
method with application to full-state approximation

S. Chellappa1, L. Feng1, and P. Benner1

1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

Reconstructing the entire state variable of a dynamical system is often necessary in applications
such as fluid dynamics, acoustics, geomechanics, etc. Model order reduction (MOR) methods such as
the reduced basis method (RBM) are preferred to achieve the real-time approximation of the state,
under different parameters or initial conditions. For systems with many parameters, the offline com-
putational cost of the RBM is often significant. To address this, our previous work [1] proposed several
variants of an adaptive parameter subsampling strategy. While the approach yielded considerable
speed up, it was restricted to the case of approximating a target output quantity. In this work, we
propose a subsampling technique for the RBM to achieve approximation of the entire state variable,
via the tensor structure of the snapshot data. Our approach is able to account for the entire space-
time variation (with respect to the parameter) of the snapshot matrix, thus yielding highly relevant
sampling points for the offline greedy process of the RBM. Numerical results on different problems
illustrate the viability of the approach in speeding up the offline cost of RBM, while also providing
reduced-order models that yield good full-state approximation for unseen parameter samples.
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Adaptive reduced-order models for high-speed flow via optimally
transported meshes

R. Loek Van Heyningen1, Ngoc Cuong Nguyen1, and Jaime Peraire1

1Center for Computational Science and Engineering, Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology

The simulation of high-speed flow problems with parametrically varying shocks poses challenges
for high-fidelity discretization methods and surrogate model construction. We use an r-adaptive mesh
adaptation method introduced in [3] to aid in the accurate resolution of flows with strong shocks and the
development of reduced-order models of these same flows. Using the method of [2] to construct high-
order solutions of the Monge-Ampère equation for optimal transport, grid nodes of a fixed reference
mesh are redistributed towards features that require more resolution. When applied to parametrized
PDEs, each solution snapshot consists of a solution field and a corresponding grid deformation. The
mapping defining the grid movement can be used to pull the solution back onto the reference mesh.
Here, sharp and local features will be smoothed out and made more globally distributed over the
domain, making them more suitable for linear basis model reduction methods like the proper orthogonal
decomposition. Reduced order models can then efficiently be built on the reference mesh for the solution
field and grid mappings. The effectiveness of this approach is shown for supersonic and hypersonic
flows with parametrized free-stream Mach number in [4].

This presentation will detail previous results and explore extensions to viscous flows and problems
with more than one parameter. For some problems, nonintrusive interpolation ROMs are sufficient for
both the mesh deformation and solution fields. To reach greater accuracy levels for sparse training sets,
we use an intrusive projection-based ROM for the solution fields. This requires the development of
novel projection strategies for hybridized discontinuous Galerkin discretizations. Finally, this approach
is coupled with the open-source uncertainty quantification framework Dakota [1] and used to perform
forward propagation of uncertain boundary conditions.

.
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An Adaptive Surrogate Model Re�nement Framework for

Trajectory Simulation and Optimization

Jonathan Cangelosi1 and Matthias Heinkenschloss2

1Ph.D. Candidate, Department of Computational Applied Mathematics and Operations

Research, Rice University, Houston, TX
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Determining the trajectory of an aircraft often requires the repeated computation of aerodynamic

coe�cients (e.g., lift, drag) which may be obtained from expensive high-�delity CFD or wind tunnel

experiments. While CFD libraries grow ever faster at running these computations, there yet remains

a need to employ surrogate models to perform the tasks of trajectory simulation and optimization

at a modest computational cost, and this must be done without signi�cantly compromising solution

quality. To improve the accuracy of the trajectory obtained from a surrogate, the surrogate may

be re�ned by obtaining additional high-�delity samples of aerodynamic coe�cients at various �ight

con�gurations and �tting the surrogate to the new data. Because obtaining this data is expensive, we

must select new data points in an intelligent way. In this talk, I propose a sensitivity-driven model

re�nement procedure that aims to select new samples that minimize the error in the trajectory resulting

from model re�nement at those samples. Numerical results are presented for a trajectory simulation

problem and a trajectory optimization problem where aerodynamic surrogates are constructed for a

nominal hypersonic vehicle. The results demonstrate that the model re�nement method is e�ective

when surrogates are slightly under-resolved, reducing the need for a priori knowledge of the physical

behavior of the aerodynamic coe�cients and achieving accurate trajectories with a small number of

additional samples.

22



Transformed Model Reduction for Partial Differential Equations
with Sharp Inner Layers

Tianyou Tang1 and Xianmin Xu1

1Insitute of Computational Mathematics, Chinese Academy of Sciences

Small parameters in partial differential equations can give rise to solutions with sharp inner layers that
evolve over time. However, the standard model reduction method becomes inefficient when applied to
these problems due to the slowly decaying Kolmogorov N -width of the solution manifold. To address
this issue, a natural approach is to transform the equation in such a way that the transformed solution
manifold exhibits a fast decaying Kolmogorov N -width. In this talk, we will present a new method
to deal with the difficulties. We employ asymptotic analysis to identify slow variables and perform
a transformation of the partial differential equations accordingly. Subsequently, we apply the Proper
Orthogonal Decomposition (POD) method and a qDEIM technique to the transformed equation with
the slow variables. Numerical experiments demonstrate that the new model reduction method yield
significantly improved results compared to direct model reduction applied to the original equation.
Furthermore, this approach can be applied to some well-known equations, such as the Allen-Cahn
equation, the convection equation and the Burgers equation, etc.
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Tensor Decomposition meets Reproducing Kernel Hilbert Spaces

(RKHS)
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4Duke University

Tensor decompositions require that data live on a regular d-way grid, but many real-world datasets
do not have this property. For example, time-evolving data may be measured at di�erent intervals for
di�erent subjects and adaptive meshes in simulations are irregular by design. We can handle irregular
grids by treating some modes as in�nite-dimension rather than �nite-dimensional; we refer to such
tensors as quasi-tensors. For their decompositions, this means that we want the factors in the tensor
decomposition to be smooth functions rather than vectors. This basic idea has appeared in myriad
forms over the years, often using di�erent terminology and with di�erent applications. I will recall and
build on these e�orts. The result is a generic framework for incorporating continuous modes into the
CP tensor decomposition. We focus on learning the in�nite-dimensional modes from a reproducing
kernel Hilbert space (RKHS) and present an alternating least squares algorithm that is computationally
e�cient. Including in�nite-dimensional modes (1) enables practitioners to enforce common structural
assumptions about data such as smoothness, (2) extends to situations in where the measurement times
do not align by utilizing the framework of missing data, and (3) provides a more principled way to
interpolate between observed points.
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The Loewner framework for parametric systems and the curse of dimensionality.
Part I: Theory

A.C. Antoulas, joint work with I.V. Gosea and C. Poussot-Vassal

We propose a new approach to data-driven model reduction of linear parametrized systems. The asso-
ciated transfer function H depends on n variables H(1s, 2s, · · · , ns), where 1s is the frequency and the
rest are n− 1 parameters. Given measurements of this transfer function, first, a method is described which
determines the degree di = νi − 1, i = 1, · · · , n, of each one of the variables is, of the transfer function H
of the approximate system.

Splitting of the variables into left 1s, · · · , ks and right k+1s, · · · , ns, leads to an n-D Loewner matrix
Ln, whose nullspace determines the coefficients of the n-D barycentric representation of H. An important
property of Ln is that it satisfies a sequence of coupled Sylvester equations. The first main result provides
a realization of the approximant in the n-D case.

As a by-product we obtain a multi-linearization of the underlying nonlinear eigenvalue problem. Fur-
thermore, by appropriately defining the left and right variables, the nonlinear eigenvalue problem becomes
linear in the frequency and multi-linear in the n− 1 parameters.

It turns out that the complexity of determining the n-D barycentric coefficients is of the order of
(
Πn

i=1ν
3
i

)
,

which results in the curse of dimensionality.
The second main result shows how elements in the nullspace of Ln can be computed using an ap-

propriately determined sequence of 1-D Loewner matrices. The ensuing computational complexity reduces
to:

ν31 + (ν1)ν
3
2 + (ν1ν2)ν

3
3 + · · · + (ν1ν2 · · · νn−1)ν

3
n,

thus breaking the curse of dimensionality. Connections to tensor approximation will be discussed together
with several examples which illustrate the theoretical results.
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The Loewner framework for parametric systems and the curse of
dimensionality. Part II: Applications

Athanasios C. Antoulas1, Ion Victor Gosea2, and Charles Poussot-Vassal3

1Rice University, Houston, Texas, USA, email: aca@rice.edu
2Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany,

email: gosea@mpi-magdeburg.mpg.de
3DTIS, ONERA, Université de Toulouse, France, email: charles.poussot-vassal@onera.fr

This contribution is a continuation of [1], which introduces the theoretical tools for multivariate
realization and null-space computation in the parametric Loewner framework [3], both addressing the
curse of dimensionality (CoD). For more specific details and in-depth theoretical considerations, in
particular, we refer to the original full paper [2].

The current work introduces algorithms and numerical procedures for constructing parameterized
realizations directly from data. Special emphasis is given to the numerical robustness and applicability
of the proposed procedures to real-life examples. In this direction, several practical considerations will
be investigated, such as selecting interpolation points (e.g., ad-hoc vs. via greedy approach, similar to
that in the p-AAA algorithm [4]), connection to tensorization and higher-dimensional decompositions,
sampling strategies (e.g., sparse vs tensorized grids), and last but not least, the efficient and accurate
Loewner matrix numerical null-space (kernel) computation.

As covered in [2], we propose an exhaustive numerical study, including a fair amount of experi-
ments. We aim to compare different implementations for a large database of test cases, data sets, and
benchmarks from model reduction, control and aerospace engineering, signal processing, data science,
and tensor computation communities. We report on intricate details such as tuning the input param-
eters of the proposed algorithms, selecting interpolation points, ways of computing the null space, etc.
The compiled statistics may be proven relevant for practitioners in various fields of engineering.

From this extensive database of experiments, several numerical examples and tests will be chosen
to illustrate the theoretical results. Namely, we cover a purely data-driven example (no existing model
available) and also established parametric benchmarks from the MorWiki collection1, as below:

• Flutter example (purely data-driven) in 2-D and 3-D [6].

• Modified Gyroscope model in 3-D,
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Modified_Gyroscope.

• Anemometer model in 4-D,
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer.
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The Hardy space H2 is a space of matrix-valued functions de�ned over the open right half-plane C+:

H2 =

{
F : C+ → Cp×m

∣∣∣∣∣ F is analytic and sup
ξ>0

∫ ∞

−∞
∥F (ξ + ıω)∥2F dω

}
.

The H2 space is a Hilbert space with inner product and norm given by, respectively,

⟨F,G⟩H2 =
1

2π

∫ ∞

−∞
⟨F (ıω), G(ıω)⟩F dω and ∥F∥H2 =

(
1

2π

∫ ∞

−∞
∥F (ıω)∥2F dω

)1/2

.

Given a full-order model with transfer function H ∈ H2, which may or may not be rational, the
H2-optimal reduced-order modeling problem is

min
Ĥ∈Σr

1

2

∥∥∥H − Ĥ
∥∥∥
2

H2

, (1)

where Σr is the set of stable rational functions of order r

Σr =

{
Ĉ
(
sI − Â

)−1
B̂

∣∣∣∣ Â ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rp×r, σ(Â) ⊂ C−,
(
Â, B̂, Ĉ

)
is minimal

}
,

where σ(Â) is the spectrum of Â and minimality means that there are no zero-pole cancellations in
Ĉ(sI − Â)−1B̂. The iterative rational Krylov algorithm (IRKA) and transfer function IRKA (TF-
IRKA) [1] are two well-known methods for solving (1); the former being projection-based (intrusive)
while the latter data-driven (non-intrusive) only needing to evaluate H and H ′. We �rst show that
Σr is a Riemannian submanifold of H2, and thus (1) is a Riemannian optimization problem. Next
we prove that both IRKA and TF-IRKA can be interpreted as Riemannian gradient descent methods
with a �xed step size applied to (1). Then we develop Riemannian gradient descent with variable step
size for (1), enabling to preserve stability and ensure a reduction in the H2 error in every step.
Both IRKA and TF-IRKA theoretically amount to re-evaluating H at iteratively corrected frequencies.
However, in some instances, we might not have access to H to do re-evaluation, instead might have
access only to a pre-determined (potentially experimental/noisy) data Hi = H(σi) ∈ Cp×m at frequen-
cies σi ∈ C for i = 1, 2, . . . , N . In this case, we consider the discretized H2-optimal reduced-order
modeling problem, namely

min
Ĥ∈Σr

N∑

i=1

ρi
2

∥∥∥Hi − Ĥ(σi)
∥∥∥
2

F
, (2)

for weights ρi > 0. We interpret (2) as a Riemannian optimization problem and then develop a
Riemannian gradient descent method for (2), and show its e�ectiveness by comparing its performance
to existing methods on various numerical examples.
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We discuss a projection-based model order reduction (MOR) for large-scale systems of switched
differential-algebraic equations (sDAEs), i.e.,

Σq

{
Eq(t)ẋ(t) = Aq(t)x(t) +Bq(t)u(t), x(t0) = 0,

y(t) = Cq(t)x(t),
(1)

where q : R → J := {1, . . . ,M} is the switching signal, i.e., a piecewise constant function taking
values in the index set J , x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp denote respectively, the state, the
controlled input, and the measured output. We emphasize that the matrices Ej ∈ Rn×n for j ∈ J
may be singular. Control systems of sDAEs may arise in modelling physical systems with algebraic
constraints and piecewise time-dependent parameters, like Stokes control system with piecewise time-
dependent diffusion. If (1) has to be evaluated repeatedly, one can rely on MOR and replace (1) by
the reduced-order model

Σ̃q

{
Ẽq(t)

˙̃x(t) = Ãq(t)x̃(t) + B̃q(t)u(t), x̃(t0) = 0,

ỹ(t) = C̃q(t)x̃(t),
(2)

with r ≪ n, Ẽj , Ãj ∈ Rr×r, B̃j ∈ Rr×m, and C̃j ∈ Rp×r for j ∈ J . Model reduction for systems of
switched ordinary differential equations (sODEs) has been addressed in many works, see for instance
[1, 3, 4] and reference therein, while, to the best of our knowledge, MOR of sDAEs only appears in
[2] for a known switching signal and with several limitations to the large-scale setting, see [2, Sec. 5].
For our MOR scheme, we rely on a reformulation of (1) as a system of sODEs with state jumps at the
switching times [2] and successively show that the method proposed in [3] can be successfully applied,
in this generalized settings, to derive a reduced-order model for the set of generic admissible switching
signals. Since the derivation of the reduced-order model is related to the solution of generalized
lyapunov equations (GLEs), we show how to efficiently compute an approximate solution of these
matrix equations by providing suitable stopping criteria based on derived error certificates. Then, we
provide a novel computable error bound for the output error which includes the estimated error in the
solution of the GLEs. To conclude, we show numerical experiments, which validate the performance
of the proposed reduction method.

References

[1] I. V. Gosea, M. Petreczky, A. C. Anntoulas, and C. Fiter. Balanced truncation for linear switched
systems. Adv. Comput. Math., 44(6):1845–1886, 2018.

[2] M. S. Hossain and S. Trenn. Model reduction for switched differential-algebraic equations with
known switching signal. Technical report, 2023.

[3] I. Pontes Duff, S. Grundel, and P. Benner. New gramians for switched linear systems: Reachability,
observability, and model reduction. IEEE Trans. Automat. Control, 65(6):2526–2535, 2020.

[4] P. Schulze and B. Unger. Model reduction for linear systems with low-rank switching. SIAM J.
Cont. Optim., 56(6):4365–4384, 2018.

30



Progress Towards Scalable Nonlinear Balancing Algorithms
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In this talk, we will discuss recent advancements in the area of computation for nonlinear balanced
truncation. The first challenge we address is the computation of nonlinear balancing controllability and
observability energy functions. These require solving Hamilton-Jacobi-Bellman equations [4], which
are notoriously difficult to solve; we leverage the Taylor-series based approach of Al’brekht [1] as the
foundation of our algorithms to compute polynomial energy functions degree-by-degree in a recursive
fashion. With special attention to algorithmic implementation details, we formulate an approach based
on tensor computations that enables computing energy function approximations for moderately sized
problems [2].

The second major challenge in nonlinear balancing involves the computation of a nonlinear trans-
formation that simultaneously diagonalizes the energy functions so that states that contribute little to
the input-output behavior of the system can be truncated [3]. Given the polynomial approximations
to the controllability and observability energy functions that we compute, we again a tensor-based
algorithms for computing the input-normal/output-diagonal transformation required for balancing.
The transformation is computed degree-by-degree, similar to how the energy functions are computed.
Unlike previous works though, we derive the explicit form for the equations based on a Kronecker
product representation for the energy functions in the interest of scalable computations. Examples are
provided to demonstrate the performance and scalability of the approach.
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Nonlinear balanced truncation via infinite-dimensional Koopman
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Balanced truncation is a well-known, powerful method for system theoretic model reduction [5].
Initially been proposed for linear control systems, nonlinear generalizations exist but require solutions
to two nonlinear PDEs of Hamilton-Jacobi type, see [6]. On the other hand, by employing a Koopman
(or composition) lifting, the evolution of a nonlinear ODE can be connected to a linear system acting on
an infinite-dimensional function space [3]. In [2], a specific output energy functional for the nonlinear
system

ẋ(t) = f(x(t)), x(0) = z (1)

has been related to a quadratic energy functional for the infinite-dimensional linear system

ψ̇(t) = Aψ(t), ψ(0) = δz (2)

where the distributional initial condition is understood formally as the limit of a sequence of appropriate
mollifiers. If considered on a suitably chosen weighted Lebesgue space, the resulting Koopman system
can be shown to be exponentially stable. In [2], this has been used to discuss the solution Q of the
following operator Lyapunov equation

⟨Aφ,ψ⟩Q + ⟨φ,Aψ⟩Q + ⟨Cφ, Cψ⟩ℓ2 = 0 ∀φ,ψ ∈ D(A) (3)

for a class of output operators C. In this talk, equation (3) serves as the starting point for an infinite-
dimensional balanced truncation strategy similar to [4]. Our interest however is to approximate the
nonlinear mapping z 7→ x(t) characterized by (1). For this, a second operator Lyapunov equation is
introduced and by means of an output-normalized realization of (2) and an SVD of the underlying
Hankel operator, a truncated reduced-order model is obtained. This model is shown to satisfy an
H2-type error bound as in [1] which, due to the smoothing properties of the Hankel operator, can even
be obtained a priori. The result is a linear finite-dimensional system which approximates (1) not only
for a single initial condition z but also if z is drawn from a known probability distribution. Numerical
examples based on tensor calculus will illustrate benefits and current limitations of the method.
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Bilinear systems with quadratic outputs (BQOs) are a special class of bilinear systems for which
the output expression contains a quadratic form of the state variable. Such dynamical systems are
characterized by the following set of differential and standard equations

ẋ(t) = Ax(t) +Nx(t)u(t) +Bu(t),

y(t) = Cx(t) + x(t)⊤Mx(t), (1)

where M = M⊤ ∈ Rn×n, A ∈ Rn×n,B ∈ Rn×1,C ∈ R1×n,N ∈ Rn×n,x(t) ∈ Rn, and u(t),y(t) ∈ R.
Such systems are of use when one is interested in observing energies or other quadratic quantities of a
bilinear system as an extension from the case of linear systems [1]. However, as far as the authors are
aware, model order reduction (MOR) techniques for such systems have not been studied so far.

In this contribution, we propose a balanced truncation (BT) approach for the MOR of BQO sys-
tems. We use the Volterra series representation of a BQO system and the state-space representation
of its dual system [4] to derive the time-domain generalized kernels of these systems and define infinite
Gramians (P and Q) for such systems. We prove various relations between the newly-defined Grami-
ans and the energy functionals of BQO systems and show that the Gramians satisfy the following
generalized Lyapunov matrix equations (which are linear in both P and Q variables),

AP+PA⊤ +BB⊤ +NPN⊤ = 0, (2)

A⊤Q+QA+C⊤C+N⊤QN+MPM = 0. (3)

We note that the reachability Gramian P satisfies the same equation as that for bilinear systems with
linear outputs, while if M = 0, the equation of the observability Gramian Q becomes the standard one.
Using (2) and (3), we put together the proposed BT algorithm for BQO systems. We also show that the
reduced-order model is balanced in the generalized sense. It is to be noted that solving (2) and (3) can
be performed employing iterative numerical methods such as in [3]. Instead of solving these generalized
Lyapunov equations, we also propose using truncated Gramians similar to the approach in [2]. We
then present an efficient BT algorithm based on such Gramians and also investigate the possibility of
deriving error bounds to quantify the approximation quality. Finally, various numerical experiments
are reported, such as a semi-discretized heat transfer model with Robin boundary conditions, for which
the observed output is given by the energy of the temperature values instead of the average thereof.
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In this work, we consider linear systems with quadratic output functions

Σ : x′(t) = Ax(t) +Bu(t) y(t) = Cx(t) +M (x(t)⊗ x(t)), (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and M ∈ Rp×n2 . We assume that the system in (1) is
asymptotically stable. Systems that consider quadratic observables as quantities of interest arise in a
variety of applications, and particularly whenever one is interested in observing quantities computed as
the product of time of frequency-domain components of the state [1]. The frequency-domain response
of such a system is fully specified by two rational transfer functions

H1(s) = C(sI−A)−1B and H2(s1, s2) = M
(
(s1I−A)−1B⊗ (s2I−A)−1B

)
. (2)

The H2 norm for systems of the form (1) can be defined via these transfer functions as

∥Σ∥2H2
:=

1

2π

∫ ∞

−∞
∥H1(ı̇ıω)∥2Fdω +

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
∥H2(ı̇ıω1, ı̇ıω2)∥2Fdω1dω2. (3)

In practical applications, the state dimension can be rather large (e.g., n ≥ 106) and any repeated
action involving the full-order model (1) becomes prohibitively expensive. Model-order reduction seeks
to remedy this problem with the construction of cheap-to-evaluate surrogate models of the form

Σ̂ : x̂′(t) = Âx̂(t) + B̂u(t) ŷ(t) = Ĉx̂(t) + M̂ (x̂(t)⊗ x̂(t)), (4)

where Â ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rp×r, M̂ ∈ Rp×r2 for 1 ≤ r ≪ n, and the reduced model (4) is such
that ∥y − ŷ∥ is small in an appropriate norm for a range of inputs. Significantly, one can show [1]

∥y − ŷ∥Lp
∞ ≤ ∥Σ− Σ̂∥H2

(
∥u∥2Lm

2
+ ∥u⊗ u∥2Lm2

2

)1/2
.

Based on this bound, we consider the H2 optimal model reduction problem for the systems in (1).
Our main contributions to this problem are threefold: First, we derive interpolation-based first-order
necessary conditions for H2 optimal model reduction. These amount to tangential interpolation of
a weighted sum of the transfer functions in (2), and generalize the analogous optimality conditions
for linear H2 model reduction. We show how to enforce these conditions in the construction of the
reduced model using projection. Secondly, we prove these conditions are equivalent to Gramian-based
H2 optimality conditions for the systems in (1). Finally, we propose an extension of the iterative
rational Krylov algorithm [2] to systems of the form (1). The algorithm enforces the necessary H2

optimality conditions at every step, and produces locally H2 optimal approximants upon convergence.
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Hyperbolic conservation laws are vital in modelling the physics of fluid flow. However, due to their
transport-dominated nature, solutions of these systems are inherently not contained in low-dimensional
linear subspaces. This precludes the use of well-established linear model reduction methods. A popular
new approach, as pioneered in [2], is to construct reduced order models (ROMs) on non-linear manifolds.
The accuracy of so-called non-linear manifold ROMs is not limited by the Kolmogorov N-width of the
system’s solution manifold. Consequently, non-linear manifold ROMs can capture the solution manifold
of transport-dominated systems.

However, for the reliability and generalizability it is crucial that non-linear manifold ROMs are
stable. For non-linear hyperbolic conservation laws the natural notion of stability is entropy stability.
An entropy-stable full-order model (FOM) conserves or dissipates a specific convex functional referred
to as entropy depending on the solution’s regularity [3]. Apart from stability, this property also assures
physically correct behaviour near discontinuities. Upon constructing ROMs from entropy-stable FOMs
this property is often lost though. In the linear setting results have been obtained in preserving the
entropy stability property for ROMs [1]. Prohibitively large subspaces are required to accurately model
the physics in this setting.

Our key contribution lies in generalizing these results to non-linear manifold ROMs which are of
far lower dimensionality. Furthermore, we propose a novel rational polynomial manifold method to
assure accuracy of the entropy-stable non-linear manifold ROM.

Our method works by generalizing the entropy projection method proposed in [1] to nonlinear
manifolds. In this approach the ROM is evaluated at a corrected state which follows from performing an
entropy projection. Evaluating the ROM at the entropy-projected state assures proper conservation or
dissipation of the entropy functional. For nonlinear manifolds the entropy projection involves projecting
the so-called entropy variables on the manifold’s tangent space at the original state. To assure the
entropy projection method remains accurate for non-linear manifolds, we propose a novel tangent space
enrichment (TSE) method. With TSE we lift the manifold in such a way so that the entropy variables
are well-resolved by the appropriate tangent spaces of the lifted manifold. At the cost of introducing
an extra reduced variable we can then assure the ROM remains accurate and entropy-stable.

We test our proposed method on several well-known one-dimensional hyperbolic conservation laws
with moving discontinuities like the Burgers equation, shallow-water equations and compressible Euler
equations. Our experiments validate the theoretical framework and show that our method significantly
outperforms linear and quadratic manifold ROMs while also possessing stability guarantees.
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Flexible and variationally consistent Hamiltonian model reduction
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Hamiltonian systems offer a simple description of conservative dynamics which presents many chal-
lenges for model reduction, particularly when canonical position and momentum variables are separated
in scale by orders of magnitude. This talk presents a novel and variationally consistent method for
the model reduction of canonical Hamiltonian systems. Its distinguishing factors are (1) its ability to
accommodate nearly arbitrary reduced bases, (2) its applicability in both intrusive and nonintrusive
settings, and (3) its interpretable error estimate involving a projection term and a deviation-from-
canonicity term, both of which must balance for accurate state approximation. Results are presented
using examples from 3D solid mechanics, showing that the proposed method offers several advantages
when compared to the existing state of the art.

Sandia National Laboratories is a multimission laboratory managed and operated by National Tech-
nology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energyâs National Nuclear Security Administration under contract
DE-NA0003525.
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Complex mechanical systems often exhibit strongly nonlinear behavior due to the presence of
nonlinearities in the energy dissipation mechanisms, material constitutive relationships, or geomet-
ric/connectivity mechanics. Numerical modeling of these systems leads to nonlinear full-order models
that possess an underlying Lagrangian structure. This work proposes a Lagrangian operator infer-
ence method enhanced with structure-preserving machine learning to learn nonlinear reduced-order
models (ROMs) of nonlinear mechanical systems. This two-step approach first learns the best-fit
linear Lagrangian ROM via Lagrangian operator inference and then presents a structure-preserving
machine learning method to learn nonlinearities in the reduced space. The proposed approach can
learn a structure-preserving nonlinear ROM purely from data, unlike the existing operator inference
approaches that require knowledge about the mathematical form of nonlinear terms. From a machine
learning perspective, it accelerates the training of the structure-preserving neural network by providing
an informed prior (i.e., the linear Lagrangian ROM structure), and it reduces the computational cost
of the network training by operating on the reduced space. The method is first demonstrated on two
simulated examples: a conservative nonlinear rod model and a two-dimensional nonlinear membrane
with nonlinear internal damping. Finally, the method is demonstrated on an experimental dataset
consisting of digital image correlation measurements taken from a lap-joint beam structure from which
a predictive model is learned that captures amplitude-dependent frequency and damping character-
istics accurately. The numerical results demonstrate that the proposed approach yields generalizable
nonlinear ROMs that exhibit bounded energy error, capture the nonlinear characteristics reliably, and
provide accurate long-time predictions outside the training data regime.

.
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Learning passive dynamical systems via spectral factorization
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Inferring mathematical models of physical systems from data is a fundamental task in engineer-
ing and science. In previous work [2], we have developed a method for the identification of passive
dynamical systems from time domain data. Now we extend this framework to the frequency domain.
We are interested in the identification of passive dynamical systems of the form

Σ

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t)

with matrices A ∈ Rn×n, B,C ∈ Rn×m, and D ∈ Rm×m. One well-known condition to ensure passivity
is the Kalman-Yakubovich-Popov lemma, i.e., the existence of matrix X ∈ Rn×n such that

WΣ(X) :=

[
−ATX −XA CT −XB
C −BTX D +DT

]
⪰ 0.

Our method is based on the spectral factorization of the Popov function

Φ(s) =

[
(−sIn −A)−1B

Im

]T
WΣ(X)

[
(sIn −A)−1B

Im

]
,

which motivates a two-step approach. First, we obtain A and B from traditional identification methods
such as the Loewner framework or Vector fitting. Then, observing that samples of the transfer function
on the imaginary axis can be used to infer the Popov function on the imaginary axis, we fit W to this
data. With W at hand, we obtain C and D in a computationally efficient way that at the same
time guarantees passivity of the realization. To overcome the course of dimensionality, we reduce the
number of decision variables and get rid of the semi-definite constraint by fitting Cholesky-like factors
of W to the data instead of W itself

WΣ(X) =
[
L M

]T [
L M

]
⪰ 0.

Combining this approach with the result of [3], which states that there exists always X such that
rank(WΣ(X)) = m, we can restrict the dimensions of L and M to n×m and m×m respectively. Now,
instead of solving a constrained convex optimization problem, we solve an unconstrained non-convex
optimization problem with (potentially) a much smaller number of decision variables. We have already
applied a similar strategy with great success in [1]. Secondly, we observe that with the framework
outlined above, we can also tackle the H2-optimal passivation problem in a large-scale setting. We
illustrate the effectiveness of our methods on several numerical examples.
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Data-driven identification of reduced port-Hamiltonian systems
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Conventional modeling techniques involve high effort and expert knowledge, while data-driven
methods often lack interpretability, structure and sometimes reliability. To mitigate this, we present
a data-driven system identification framework that derives models in the port-Hamiltonian (pH) for-
mulation, which is suitable for multi-physics modeling. At the same time, these systems incorporate
the useful system theoretical properties of passivity and stability [2]. Our framework combines lin-
ear and nonlinear reduction with structured, physics-motivated system identification, see Fig. 1. In
this process, high-dimensional and possibly nonlinear state data serves as the input for the autoen-
coder, which then performs two tasks: (i) nonlinearly transforming and (ii) reducing this data onto a
low-dimensional manifold following the approach of [1]. In the resulting latent space, a pH system is
identified by using the weights of a neural network as entries of triangular matrices that strongly satisfy
the pH properties. In a joint optimization process over the loss term, the pH matrices are adjusted to
match the dynamics of the data, and the latent coordinates automatically become pH variables. The
identified (parameter-dependent) pH system can be solved in the reduced space to obtain solutions
for varying initial conditions, parameters and inputs. Furthermore, it can be shown that the decoded
pH system on the state space fulfills pH properties under certain assumptions. The learned, linear
low-dimensional pH system can describe even nonlinear systems and is rapidly computable due to its
small size [3]. An academic nonlinear example of a pendulum and the high-dimensional model of a
disc brake with linear thermoelastic behavior exemplify the approach.
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Figure 1: Port-Hamiltonian deep learning framework [3].
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Structure-preserving model order reduction of linear time-varying
port-Hamiltonian systems
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Many physical processes can be naturally modeled using port-Hamiltonian (pH) systems [4], which
are inherently passive and stable, and allow for structure-preserving interconnection, making them
particularly suitable for the modeling of complex networks. Furthermore, many dedicated numerical
methods have been developed to exploit and preserve the structure of pH systems, e.g. for space- and
time-discretization, and model order reduction (MOR).

In our work, we focus on the structure-preserving MOR of linear time-varying (LTV) pH systems
[1], which have the form

ẋ(t) = ((J(t)−R(t))Q(t)−K(t))x(t) + (G(t)− P (t))u(t),

y(t) = (G(t) + P (t))⊤Q(t)x(t) + (S(t)−N(t))u(t),
(1)

where x ∈ Rn, and u, y ∈ Rm denote the state, input and output variables, respectively, and the
coefficients J,R,Q,K,G, P, S,N are matrix functions depending on the time variable, satisfying J(t) =
−J(t)⊤, N(t) = −N(t)⊤, Q(t) = Q(t)⊤ ≥ 0, Q̇(t) = Q(t)K(t) +K(t)⊤Q(t), and

W (t) :=

[
R(t) P (t)
P (t)⊤ S(t)

]
=W (t)⊤ ≥ 0 (2)

for all times t. The Hamiltonian H(x, t) := 1
2x

⊤Q(t)x is then a storage function for (1).
LTV systems appear quite naturally in many applications, e.g. in the linearization of nonlinear

systems around non-stationary reference solutions, or when some of the system parameters are time-
dependent. In the literature there are few works on the MOR of general LTV systems [3], but even
fewer on the MOR of LTV-pH systems. In this talk, we introduce a general approach based on (Petrov)-
Galerkin projection for the structure-preserving MOR of LTV-pH systems. In particular, we show that
the effort constraint method extended to the case of LTV-pH systems falls into this category. Then,
we present a variant of the usual balanced truncation method that combines balancing with effort
constraint to obtain a reduced pH model, similarly to what was done in [2] for linear time-invariant
systems. Numerical experiments to validate our methods are exhibited.
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Beyond linear – a differential geometric framework for nonlinear
projections
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While classical linear-subspace MOR is well-established, it cannot approximate a dynamical sys-
tem with a low-dimensional surrogate with high fidelity if the Kolmogorov n-widths (respectively the
Hankel singular values; see [4]) decay slowly, which is the prevalent scenario in transport-dominated
applications. To remedy this issue, several nonlinear approximation schemes have been proposed over
the last decade in the literature, and the use of nonlinear projections, including deep learning archi-
tectures in model order reduction (MOR), is still a very active research field. In this talk, we provide
a first attempt towards a unifying framework for (many of) these methods by acknowledging that
general nonlinear projections can benefit from a differential geometric viewpoint [1]. In more detail,
we provide a novel framework for model reduction on smooth manifolds, emphasizing the objects’
geometric nature. The crucial ingredient is the construction of an embedding for the low-dimensional
submanifold and a compatible reduction map that maps a subset of the tangent bundle of the mani-
folds onto the tangent bundle of the reduced manifold. In this talk, we demonstrate how the classical
(Petrov-)Galerkin framework using linear projections can be generalized to the manifold setting, thus
generalizing results from [2, 3], and prove a general exact reproduction result. To connect our frame-
work to existing work in the field, we demonstrate that various nonlinear MOR techniques presented
in the literature can be included.
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manifolds to data-driven realizations

P. Buchfink1,2, S. Glas1, B. Haasdonk2, H. Mu1, and B. Unger3

1Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente
2Institute of Applied Analysis and Numerical Simulation, University of Stuttgart
3Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart

Capturing and preserving physical properties, e.g., system energy, stability and passivity, using
data-driven methods is currently a highly-researched topic in surrogate modeling. To ensure that the
desired physical properties are retained, structure-preserving projection techniques are used in the field
in model reduction (MOR), see e.g., [3].

In this talk, we present structure-preserving MOR with nonlinear projections, which are needed for
problems with slowly decaying Kolmogorov-n-widths. To precisely define and highlight the quantities
that we would like to retain, we start with a formulation of initial value problems on manifolds, which
we consider as the full-order model (FOM). Already at this level, we define what we mean by adding
structure to the FOM and how this can be detailed geometrically. This formalism allows to introduce a
novel projection technique, the generalized manifold Galerkin (GMG) [2]. By adapting the underlying
non-degenerate tensor field, this GMG projection can be used for a structure-preserving reduction of
various initial value problems that give rise to interesting physical properties, which include, but are
not restricted to, Lagrangian and Hamiltonian systems.

Once that we have derived the geometric formulation, we focus on data-driven ansatzes to realize
the presented reduction methods. In this part of the talk, we will connect several existing techniques
for data-driven realizations with GMG projections [1, 4].
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In this talk, I review recent efforts on the development of registration methods [2] for parametric
model order reduction (MOR), with emphasis on advection-dominated flows. In computer vision and
pattern recognition, registration refers to the process of finding a parametric transformation that aligns
two datasets; in model order reduction, registration methods seek a parametric bijection Φ that tracks
coherent structures (e.g., shocks, shear layers) of the solution field. Formally, given the computational
domain Ω ⊂ Rd, the vector of parameters µ in the parameter region P ⊂ RP , and the solution set
M = {uµ : µ ∈ P}, the bijection Φ is designed to make the mapped manifold M̃ = {uµ ◦ Φµ : µ ∈ P}
(more) suitable for linear compression methods (e.g., POD).

We integrate registration in the offline/online model reduction framework to tackle problems with
parameter-dependent discontinuities [1]. Our approach combines registration with three additional
building blocks: (i) an hyper-reduced least-squares Petrov-Galerkin (LSPG) reduced-order model, to
estimate the mapped solution; (ii) a parametric mesh adaptation procedure to build a parsimonious
yet accurate representation of the solution field; and (iii) a multi-fidelity strategy to reduce offline
training costs. We present numerical results for several two-dimensional inviscid compressible flows,
to show the potential of the method.
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We propose and investigate weak greedy snapshot-based model reduction for linear di�erential
equations posed in the frequency domain with parametric dependence. The full order model is,

x′(t) = A(p)x(t) +Bu(t), y(t) = C(p)x(t),

where u ∈ Rnin is a given input signal, y ∈ Rnout is an output, and the matrices A, B, and C are
dependent on a parameter p ∈ Rd. The frequency domain representation of this system is a stationary
linear problem that de�nes the frequency response of the output y. Our main strategy is to deploy a
certain type of reduced basis method-type solver for the frequency domain problem. Similar approaches
for this problem include interpolatory methods [1] and moment matching-type procedures [2, 3].

Our contributions are as follows. Our particular reduced basis method representation uses fre-
quency domain parametric snapshots to build low-dimensional approximation spaces. The algorithmic
ingredients employ techniques from reduced basis methods such as empirical interpolation, successive
constraint methods, and a posteriori error estimators. The procedure is an algorithmic realization
of recent theory that connects Kolmogorov n-width decay to rational approximability of the transfer
function of the full order model. We discuss how this procedure is backed by corresponding a priori

theoretical guarantees on approximation of the full order parametric system transfer function. We also
demonstrate how this theory translates into practical performance of the algorithm, including certi�-
cation of error. Our examples reveal the e�cacy of this procedure and in particular how the a priori

theory informs expected performance of the reduced order model.
We will showcase deployment of this new method through our newly developed Julia package,

ModelOrderReductionToolkit.jl. This package achieves several goals. It provides replicable, imple-
mentable, and extendable numerical examples that illustrate the e�cacy of the method, including rates
of error decay. To promote the numerical computing of reduced order models, the package contributes
new functionality to the Julia reduced order modeling community by providing a set of open source
tools that could be applied to several model order reduction problems. While the current focus is on
linear parametric reduced order modeling techniques, the long-term goal of the package is to provide a
starting point for learning about and implementing more general reduced order models used in various
applications.
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Parametric data-driven modeling is relevant for many applications where the model depends on some
varying parameter. Consider parametric linear time-invariant systems of the form

d
dtx(t, p) = A(p)x(t, p) +B(p)u(t),

y(t, p) = C(p)x(t, p) +D(p)u(t),
(1)

with transfer function

H(s, p) = C(p)(sI −A(p))−1B(p) +D(p). (2)

This work falls in the category of data-driven modeling and reduction of parametric systems[1]. In
particular, we focus on modeling parametric linear systems based on a sampling of the parameter space
into snapshots of system matrices. Each snapshot is given by

Σi =
(
A(pi), B(pi), C(pi), D(pi)

)
, (3)

where i ∈ {1, . . . , np} at np ∈ N �xed parameter samples pi ∈ P , the aim is to construct an approx-
imate bivariate transfer function Ĥ(s, p) of the form (2) that interpolates the data, i.e. Ĥ(s, pi) =
H(s, pi), for any given value of pi ∈ P and s ∈ C and matches the original transfer function H(s, p)
as closely as possible at intermediate parameter values pi ̸= p ∈ P . In order to obtain the matrices
that constitute the transfer function, each global parametric matrix is obtained by interpolation of
individual snapshot matrices in (3). This type of parametric systems interpolation is called matrix
interpolation. The main constraint of this method is that all snapshots have to lie in the same sub-
space. This problem is dealt with by the projection of all the snapshots in a common subspace as
discussed in [2]. We assume in our case that the snapshots are already given in a common subspace.
If not, one can follow the framework of [2]. Then, the parameter snapshots are interpolated using
the classical univariate Loewner framework. This avoids the computational burden of multivariate
Loewner matrices and their truncation. Then, the global bivariate transfer function of the form (2) is
extracted using a linear fractional transformation (LFT) where the LFT is de�ned for LTI systems as

G(s) = C(sIn −A)−1B +D = Fu

([
A B
C D

]
, s−1In

)
. (4)

With this method we are also able to derive a priori rank bounds for the Loewner matrices based on
the parametric structure of the transfer function. These bounds are derived for an a�ne dependence
of the parametric transfer function on p and a higher-order polynomial dependence on p. Finally, the
implementation details are discussed where we propose a switching strategy to speed up computations
and support our results by multiple numerical examples.
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The classical (weak) greedy algorithm is used within the reduced basis method in order to compute
a reduced basis in the o�ine training phase. To this end, either the actual error or an a posteriori
error estimator is maximized and the snapshot corresponding to the maximizer is added to the current
basis.
We aim at exploring the potential of parallel computations in the o�ine phase to obtain some speed-up
in particular in those cases where the snapshot computation is extremely costly. In order to do so,
we introduce a batch size b and add b snapshots to the current basis in every greedy iteration. These
snapshots are computed in parallel.
First, we prove convergence rates for this new batch greedy algorithm for polynomial and exponential
decay of the Kolmogorov width and compare them to those of the classical (weak) greedy algorithm,
[1, 2]. Then, we present numerical results where we apply a (parallel) implementation of the proposed
algorithm to some benchmark problems. We analyze the quality of the �nal reduced basis, as well as
the o�ine and online wall-clock times for di�erent batch sizes and show that the proposed variant can,
in fact, be used to speed-up the o�ine phase.
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The active subspace approach [1] has been successfully applied to parametric model order reduc-
tion (PMOR) for systems with many parameters (1). This work considers a linear parametric system
with a large dimensional parameter space P, represented by its transfer function

H(p, s) = c(p)(sE(p)−A(p))−1B(p), (1)

where p ∈ P ⊂ Rnp is the vector of parameters; s is the Laplace variable; E(p), A(p) ∈ Rn×n,
B(p) ∈ Rn×nI , C(p) ∈ RnO×n are the system matrices. Using the active subspace method, a matrix
U ∈ Rnp×rp , rp < np, is computed so that its columns span the active subspace U of the parameter
domain P. Based on the active subspace, the parameter sampling can be done in U , the reduced
transfer function

Hr(p, s) = C(UUT p)V (sV TE(UUT p)V − V TA(UUT p)V )−1V TB(UUT p)

is computed by using U and a projection matrix V ∈ Rn×r, r ≪ n via, e.g., the PMOR method in [2].
While the active subspace approach is able to achieve decent accuracy with a relatively small

Reduced Order Model (ROM), its accuracy often fails to scale with the size of the ROM. In this paper,
we propose an iterative approach that aims to improve the accuracy of the active subspace approach,
while keeping the ROM size as small as possible. The reduced transfer function Hr(p, s) is iteratively
updated by applying PMOR with the active subspace method [1] to the error system at the current
iteration.

Our proposed method is applied to analyze a structural mechanical system of a micro-electro-
mechanical system (MEMS) accelerator, which consists of np = 416 parameters and n = 15652 state
variables generated by the finite element method with a parametric mesh [3]. To obtain an acceptable
ROM with an average accuracy of around 80% over the entire parameter space, we need at least a
ROM with r = 500 (by Latin hypercube sampling in parameter space). In comparison, the original
active subspace method is able to achieve 50% accuracy with a single ROM r = 20. However, we do
not observe significant accuracy improvements when the ROM size is further increased. In contrast,
the ROM constructed by our iterative active subspace method, is updated by several small ROMs
with r = 20 at each iteration. The final ROM, in the form of the sum of 7 small ROMs, achieves
78.8% accuracy after 3 iterations. In summary, the proposed method improves the efficiency of the
standard PMOR method and the accuracy of the original active subspace method [1] for systems with
large-dimensional parameter spaces.
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Classically, model order reduction it is based on a so-called offline phase, where reduced approx-
imation spaces are constructed and the reduced parameterized system is built, followed by an online
phase, where the reduced system can be cheaply evaluated in a multi-query context. In this contribu-
tion, instead, we follow an active learning or enrichment approach where a multi-fidelity hierarchy of
reduced order models is constructed on-the-fly while exploring a parameterized system.

To this end we focus on learning based reduction methods in the context of PDE constrained
optimization [1, 2, 4] and inverse problems [3] and evaluate their overall efficiency. We discuss learning
strategies, such as adaptive enrichment within a trust region optimization framework as well as a
combination of reduced order models with machine learning approaches.

We propose a hierarchical framework of full order, reduced order, and machine learning models [5]
for parameterized parabolic equations that can be queried in any context with a prescribed accuracy.
The resulting hierarchical model adaptively updates its hierarchy if it is queried for parameters where
either the machine learning model or the reduced order model is not accurate enough. The accuracy
is thereby measured by a rigorous a posteriori error estimator that can be used by both the reduced
order and machine learning model. As machine learning approaches, we studied deep neural networks
as well as kernel and deep kernel methods. Following the multi-fidelity approach, the hierarchy may
also only consists of a full order model and a deep neural network based machine learning model built
from snapshots of the full order model [6]. Concepts of rigorous certification and convergence will be
presented, as well as numerical experiments that demonstrate the efficiency of the proposed approaches.
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High-fidelity numerical simulations of partial differential equations (PDEs) given a restricted com-
putational budget can significantly limit the number of parameter configurations considered and/or
time window evaluated. Multi-fidelity surrogate modeling aims to leverage less accurate, lower-fidelity
models that are computationally inexpensive in order to enhance predictive accuracy when high-fidelity
data are scarce [4]. However, low-fidelity models, while often displaying the qualitative solution be-
havior, fail to accurately capture fine spatio-temporal and dynamic features of high-fidelity models.

To address this shortcoming, we present a data-driven strategy that combines dimensionality
reduction with multi- fidelity neural network surrogates [1]. The key idea is to generate a spatial
basis by applying proper orthogonal decomposition (POD) to high-fidelity solution snapshots, and
approximate the dynamics of the reduced states – time-parameter-dependent expansion coefficients
of the POD basis – using a multi-fidelity long short-term memory network [2, 3]. By mapping low-
fidelity reduced states to their high-fidelity counterpart, the proposed reduced-order surrogate model
enables the efficient recovery of full solution fields over time and parameter variations in a non-intrusive
manner. A further extension to the case of multiple data sources, with low-fidelity models of different
type, is also considered, in the spirit of progressive learning from multiple sources.

The generality of the proposed approach is demonstrated by a collection of PDE problems where
the low-fidelity model can be defined by coarser meshes and/or time stepping, as well as by misspecified
physical features.

.
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This work presents a non-intrusive Bayesian inference method for learning reduced-order models whose
predictions are endowed with uncertainty estimates. The strategy is based on operator inference
(OpInf), which poses the problem of learning reduced operators as a regression of state space data
and corresponding time derivatives. When time derivative data are not natively available, as is often
the case in applications, they must be estimated from the state data, usually via finite differences. An
inaccurate estimation adversely affects the quality of the learned reduced-order model, hence OpInf is
challenging when state data are sparse or noisy. Our approach builds on our previous work [1] by com-
bining OpInf with Gaussian process surrogate modeling to probabilistically describe uncertainties in the
state data and procure analytical time derivative estimates with uncertainty. A Bayesian formulation is
used to define a posterior distribution for the reduced-order operators, hence predictions subsequently
issued by the reduced-order model are endowed with uncertainty, with statistical moments that can
be estimated efficiently via Monte Carlo sampling. The Bayesian inference problem is equivalent to
a weighted, Tikhonov-regularized least-squares regression. We select the regularization term, which
relates statistically to the Bayesian prior, using an optimization-based strategy that ensures operators
sampled from the posterior distribution result in numerically stable models. We demonstrate the ap-
proach for a quadratic system describing the compressible flow of an ideal gas (see Figure 1) and a
nonlinear diffusion model with a parameterized forcing term. The numerical results show that sparse,
noisy data can be handled effectively to non-intrusively construct probabilistic reduced-order models
that can issue accurate predictions in time and for parametrically varying input terms.
SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.
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Figure 1: GP-Bayesian operator inference for the compressible Euler equations of an ideal gas. A set of
50 state observations with 5% relative noise is used to construct a quadratic probabilistic reduced-order
model. Results are shown for the first three modes and for the full state space at one point in space.
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Quadratically nonlinear reduced-order models (ROMs) are commonly used for approximating the dy-
namics of fluids, plasmas, and many other physical systems. However, it is challenging to a-priori
guarantee the local or global dynamical stability of reduced-order models built from data. For in-
stance, a minimal requirement for physically-motivated ROMs is long-time boundedness for any initial
condition, yet many ROMs in the literature still fail this basic requirement. For quadratically non-
linear systems with energy-preserving nonlinearities, the Schlegel and Noack trapping theorem [5]
provides necessary and sufficient conditions for long-time boundedness to hold. This analytic theorem
was subsequently incorporated into system identification and machine learning techniques in order
to produce a-priori bounded models directly from data [2, 3, 1]. However, many dynamical systems
exhibit weak breaking of the quadratically energy-preserving nonlinear structure required for the trap-
ping theorem. To address this important case, we present recent work that relaxes the quadratically
energy-preserving constraint and derives local stability guarantees for data-driven models. The analytic
results are subsequently used with system identification techniques to build models with a-priori local
stability properties [4]. Lastly, we comment on alternative methods and future work for promoting
dynamical stability in data-driven models.
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This contribution addresses the problem of learning dynamical Linear Switched System (LSS)
models from input/output observations [1]. The method is illustrated on systems switching between
two modes, according to the value of an exogenous signal p(t) : R+ → {0, 1}. The LSS G maps its
input u(t) to the output y(t), i.e. y(t) = G[u(t), p(t)], see [1] for a rigorous de�nition.

First, we observe that G can be viewed as a family of linear time-varying (LTV) systems, each
corresponding to a �xed switching trajectory. In particular, restricting p(t) to the set of square-wave
signals pω0(t) of frequency ω0, the collection of periodic LTV systems Gω0 (indexed by ω0) is de�ned
by yω0(t) = Gω0 [u(t)] ≜ G[u(t), pω0(t)]. According to Zadeh's theory [3], Gω0 is represented by an
ω0-periodic transfer function Hω0(jω, t), that admits a complex Fourier expansion with coe�cients

H
(n)
ω0 (jω), n ∈ Z. Isolating n = 1, we de�ne the bivariate function F (jω, jω0) ≜ H

(1)
ω0 (jω), that is a

purely I/O representation, measurable by experiment or simulation in periodic steady-state conditions.

Hence, the training dataset is a collection of evaluations F (jω(k), jω
(h)
0 ).

With this premise, we look for a model G̃ whose associated bi-variate function F̃ (jω, jω0) ap-
proximates F in a least-squares sense. To this aim, we adopt a Wiener-like model structure [2] for G̃,
whose output is ỹ(t) = G̃[u(t), p(t)] =

∑ı̄
i=1 ϕi[p](t) ·ψi[u](t), where ϕi[·] and ψi[·] are LTI systems. Its

F̃ -function can be written in pole-residue form as

F̃ (jω, jω0) = (jπ)−1
∑

i,j

rij(jω − αi)
−1(jω0 − βj)

−1. (1)

We highlight that in the selected model structure, the components ϕi[p](t), ψi[u](t) are the outputs of
scalar LTI systems. Model �tting, i.e. optimization of poles αi, βj and residues rij , can be performed
using a suitable adaptation of a multivariate rational �tting algorithm. In our experiments, we used
the Vector Fitting (VF) algorithm in two steps. First, we view ω0 as a parameter and run VF to �nd

a set of basis poles αi to approximate the frequency dependence w.r.t. ω for all sampled values ω
(h)
0

collectively. Then, a second run of VF, with �xed αi, gives poles βj and residues rij . Finally, G̃ results
from assigning ϕi(s) = (s−αi)

−1, ψi(s) =
∑

j rij(s−βj)−1. The input/output stability of the proposed
model structure is guaranteed by enforcing strictly negative real part of the estimated poles αi, βi using
standard techniques. The proposed approach is demonstrated using several benchmark examples of
practical interest, including a Buck voltage regulator commonly used to stabilize the microprocessor
power supply in electronic systems.
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High-performance computing (HPC) and data-driven reduced modeling offer two complementary
perspectives on numerical simulations of complex systems. HPC focuses on parallel architectures, al-
gorithms, and software implementations to conduct high-fidelity simulations on supercomputers. On
the other hand, data-driven reduced modeling aims to construct computationally inexpensive yet suf-
ficiently accurate approximations to enable tasks that are computationally too expensive in terms of
high-fidelity models. The work discussed in this presentation enables a fast and scalable construction
of predictive physics-based reduced models from data in problems at a scale and complexity the exceed
what standard approaches used in the model reduction community can afford. Such a capability is
essential for enabling many-query engineering tasks, real-time control and decision making, as well
as digital twins in large-scale, real-world applications. This is achieved by a distributed algorithm
that integrates high-performance computing into the data-driven reduced modeling procedure. Our
algorithm enables the efficient and scalable processing of extremely large-scale datasets, and the learn-
ing of structured physics-based reduced models that approximate the dynamical systems underlying
those datasets. We demonstrate its effectiveness using up to 1 024 processing units on the Frontera
supercomputer at the Texas Advanced Computing Center. We focus on a real-world three-dimensional
rotating detonation rocket engine simulation with more than 75 million degrees of freedom for which
two milliseconds of simulated physical time necessitate six million core hours on more than 16 000
processing units on a supercomputer. We first demonstrate the strong and weak scalability of our
distributed algorithm, as depicted in Figure 1. We then show that our method enables the preprocess-
ing of the large training data set as well as the construction of a predictive physics-based data-driven
reduced model in a mere four seconds on 1 024 processing units.
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Figure 1: Scaling results performed on the Frontera supercomputer. The left figure plots the strong
scaling speed up whereas the right figure plots the weak scaling efficiency of our distributed algorithm.
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Stability Guarantees of Non-Intrusive Data-Driven
Model Reduction for Nonlinear Systems

Tomok Koike1 and Elizabeth Qian1

1Georgia Institute of Technology

In many-query computations, particularly those involving large-scale or highly complex models, the
development of an efficient surrogate model is essential. This is especially true for real-time applica-
tions, such as control systems, which require high-efficiency computations across many queries. To
address this requirement, we focus on constructing surrogate models using projection-based model re-
duction methods. These methods project the original system onto a reduced subspace, yielding reduced
surrogate models. Through projection, the reduced models can inherit the stability properties of the
original system, which are essential for system control. This inheritance, however, primarily applies
to intrusive projection methods, where the model operators and underlying code are accessible. In
contrast, many practical scenarios are non-intrusive, meaning the original model is unavailable. In
these scenarios, non-intrusive methods have been developed to construct reduced surrogate models
from empirical data. Unlike intrusive methods, non-intrusive ones do not directly project the original
model onto the reduced subspace, thereby leaving the preservation of stability guarantees within the
reduced models as an open question.

The Lyapunov function V is central to analyzing stability guarantees and synthesizing controllers for
nonlinear systems. It provides a sufficient condition for stability if it satisfies the conditions: V > 0
and V̇ < 0. It also defines the domain of attraction, indicating the region under which the system
states asymptotically converge to equilibrium. Although constructing Lyapunov functions analyti-
cally is feasible for low-dimensional ordinary differential equations, this task becomes considerably
more challenging for large-scale systems governed by partial differential equations since identifying
a function that fulfills stability conditions in these high-dimensional settings is difficult. While var-
ious methods for constructing Lyapunov functions for lower-dimensional systems exist, they are yet
nontrivial to solve. For instance, Krasovskii’s method requires solving a linear matrix inequality and
approaches such as linear programming and sum-of-squares methods involve optimizations that are
computationally intensive [1, 2]. Moreover, extending these methods to high-dimensional systems be-
comes impractical due to the curse of dimensionality.

In this presentation, we will introduce new work in developing Lyapunov functions for data-driven
reduced models learned using the Operator Inference method [3]. The approach aims to provide
stability guarantees for data-driven nonlinear reduced models. Additionally, we will demonstrate the
method through various numerical examples.
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Data-driven Models of Nonautonomous Systems

Hannah Lu1 and Daniel M. Tartakovsky2

1Department of Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

1Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

2Department of Energy Science and Engineering, Stanford University, Stanford, CA 94305,
USA

Nonautonomous dynamical systems are characterized by time-dependent inputs, which compli-
cates the discovery of predictive models describing the spatiotemporal evolution of the state variables
of quantities of interest from their temporal snapshots. When dynamic mode decomposition (DMD)
is used to infer a linear model, this difficulty manifests itself in the need to approximate the time-
dependent Koopman operators. Our approach is to approximate the original nonautonomous system
with a modified system derived via a local parameterization of the time-dependent inputs. The modi-
fied system comprises a sequence of local parametric systems, which are subsequently approximated by
a parametric surrogate model using the DRIPS (dimension reduction and interpolation in parameter
space) framework[1]. The offline step of DRIPS relies on DMD to build a linear surrogate model,
endowed with reduced-order bases for the observables mapped from training data. The online step
interpolates on suitable manifolds to construct a sequence of iterative parametric surrogate models;
the target/test parameter points on these manifolds are specified by a local parameterization of the
test time-dependent inputs. We use numerical experimentation to demonstrate the robustness of our
method[2] and compare its performance with that of deep neural networks.
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A novel approach for characterizing and enforcing stability of
barycentric rational models in the AAA algorithm

Tommaso Bradde1, Ion Victor Gosea2, and Stefano Grivet-Talocia1

1Dept. of Electronics and Telecommunications, Politecnico di Torino, Italy
2Max Planck Institute for Dynamics of Complex Technical Systems

Rational approximation algorithms based on barycentric model structures are some of the meth-
ods of choice for learning Reduced-Order Models (ROMs) of large-scale Linear Time-Invariant (LTI)
systems in non-intrusive, data-driven settings. In this work, we address the problem of characterizing
and enforcing the asymptotic stability of a ROM with transfer function Ĥ(s) in barycentric form

Ĥ(s) =
N(s)

D(s)
∈ C, N(s) =

k∑

i=1

hiwi

s− qi
, D(s) =

k∑

i=1

wi

s− qi
, D∗(s) = D(s∗), wi ̸= 0 ∀i. (1)

In the above, qi, hi are assumed to be fixed quantities, while the coefficients wi (the so-called barycentric
weights) are model unknowns, to be optimized so that Ĥ(s) matches samples of the underlying full-
order system transfer function, according to a prescribed accuracy criterion, i.e., as in [3]. Our first
result is deriving a set of novel algebraic conditions on the barycentric weights wi’s that characterize
the stability of Ĥ(s). This characterization is obtained by proving that, under mild conditions, a ROM
with transfer function Ĥ(s) is asymptotically stable if and only if the denominator D(s) is an Almost
Strictly Positive-Real (ASPR) transfer function [1], i.e., a transfer function that fulfills the requirement

∃g ∈ R : G(s) =
D(s)

1 + gD(s)
is Strictly Positive Real, (2)

see [2] for further details and proofs. Exploiting this fact, and defining a suitable state-space realization
for D(s), requirement (2) is translated into a set of non-convex algebraic constraints involving the
unknowns wi by means of the Positive Real Lemma [1], which provides the proposed characterization.

Our second contribution illustrates how to proficiently exploit the above results for performing
reduced-order modeling with guaranteed stable ROMs. We present a constrained version of the AAA
(Adaptive Antoulas-Anderson) algorithm [3], in which the unknowns optimization is forced to return
solutions that allow the verification of (2), and thus generate stable ROMs. Applying an ad-hoc
relaxation strategy, we show that the involved constrained optimization problem can be solved via
semidefinite programming, by suitably weighting the linearized error function minimized by the stan-
dard AAA iteration. Furthermore, we propose an efficient extension of the resulting algorithm to the
Multi-Input-Multi-Output (MIMO) case, and we test experimentally the efficiency and the reliability
of the approach, by tackling model order reduction problems arising from different physical domains.
Finally, we compare its performance with those of other state-of-the-art methods that use different
types of strategies to enforce the stability of rational barycentric models.
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Parametric Reduced-Order Modeling via Low-Rank Barycentric
Forms and the p-AAA Algorithm

L. Balicki1 and S. Gugercin1

1Department of Mathematics, Virginia Tech, Blacksburg, USA

Rational approximation is a widely used tool for data-driven reduced-order modeling of linear
dynamical systems. In recent years the adaptive Antoulas-Anderson (AAA) algorithm [1] has estab-
lished itself as a successful method for computing rational approximations from a set of sampled data.
Our recent work [2] introduced the p-AAA algorithm, extending the original AAA framework to multi-
variate rational functions, which allows for effectively capturing the dynamics of parameter-dependent
systems. In p-AAA, rational approximations are represented via baryentric forms of the type

Ĥ(s, p) =




k∑

i=1

q∑

j=1

αijH(σi, πj)

(s− σi)(p− πj)




/


k∑

i=1

q∑

j=1

αij

(s− σi)(p− πj)


 , (1)

where H(σi, πj) corresponds to transfer function data sampled from a high-fidelity model or real-world
measurements. Aside from choosing suitable interpolation points (σi, πj) via a greedy selection, the
p-AAA algorithm determines the matrix of barycentric coefficients α ∈ Ck×q via a linear least-squares
(LS) problem of the form

min
∥α∥F=1

∥L2 vec(α)∥22. (2)

Solving the LS problem (2) is the dominant cost of p-AAA and is done via a singular value decom-
position of the 2D Loewner matrix L2 ∈ C(d−kq)×kq where d corresponds to the number of available
samples. This problem becomes computationally demanding when the underlying system depend on
many more parameters. In this case the barycentric coefficients form a tensor in Ck×q×z×··· and solving
the corresponding LS problem often becomes impractical. To overcome these shortcomings, we intro-
duce a new barycentric form which uses low-rank matrix and tensor decompositions to implicitly store
the barycentric coefficients. For Ĥ in (1) we use the factorization α = βγ⊤ where β ∈ Ck×r, γ ∈ Cq×r

and r ≪ min(k, q). We show that in this case the p-AAA objective function can be written as

∥L2 vec(α)∥22 = ∥Lγ vec(β)∥22 = ∥Lβ vec(γ)∥22,
where Lγ ∈ C(d−kq)×kr and Lβ ∈ C(d−kq)×qr. This connection allows for leveraging an alternating LS
(ALS) procedure to compute α in an iterative manner. Our ALS approach is particularly appealing
when moving to systems with many parameters. In this case the complexity of computing α reduces
to O(dr2(k2 + q2 + z2 + · · · )) as opposed to O(dk2q2z2 · · · ) for the original p-AAA LS problem. We
demonstrate the effectiveness of our proposed approach via various numerical experiments. Aside from
discussing practical aspects of our method, we establish theoretical connections to separable function
approximation. In particular, we establish conditions for the underlying dynamical system under which
our proposed method is particularly effective.
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Optimal H2 Approximation from Time-Domain Data

M. S. Ackermann1 and S. Gugercin1

1Department of Mathematics, Virginia Tech, Blacksburg, 24061, VA, United States

We consider the optimal H2 approximation of a discrete-time, single-input single-output system

x[k + 1] = Ax[k] + bu[k]; y[k + 1] = c⊤x[k] with transfer function H(z) = c⊤(zI−A)−1b, (1)

where x[k] ∈ Rn, u[k] ∈ R, and y[k] ∈ R are, respectively, the states, input, and output at time k;
A ∈ Rn×n,b ∈ Rn, and c ∈ Rn. Even though we explicitly write the state-space matrices in (1), in
this work, we will never assume access to the model, but only to time-domain input-output data

U = [u[0] . . . u[T ]] ∈ RT+1 and Y = [y[0] . . . y[T ]] ∈ RT+1. (2)

Given the input/output data (2), our goal is to construct a data-driven reduced-order model (DDROM)
with form as in (1) but with the reduced quantities Ar ∈ Rr×r,br ∈ Rr, and cr ∈ Rr with r ≪ n, to
minimize the H2 distance ∥H −Hr||2H2

= 1
2π

∫ π
−π |H(eiω)−Hr(e

iω)|2dω.
The Realization independent Iterative Rational Krylov Algorithm (TF-IRKA) [2] constructs H2 opti-
mal DDROMs from transfer function data H(σ) and H ′(σ). However, it requires repeated evaluations
of H(z) and H ′(z) at a priori unknown points. Such information may not be feasible to obtain during
the iteration or we may only have time-domain data (2).
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0 In our recent work [1] based on [3], we developed a robust

framework, complete with an error indicator, for recovering
H(σ) and H ′(σ) from purely time-domain data (2). This
approach requires solving two linear systems with Hankel-
like structure that also involve powers of σ, i.e., σk for
k = 1, . . . , N where N is usually large. The work [1] only
considered σ on the unit disc, which prevented the powers
of σ from causing further ill-conditioning. However, the H2

optimal modeling problem requires evaluating H and H ′

outside the disk, leading to extremely ill-conditioned linear
systems to solve in the framework of [1].

In this work, we first develop the theory on how to optimally scale these linear systems so that recovery
ofH(σ) for |σ| > 1 is computationally feasible. We directly connect conditioning of these linear systems
to the properties of the underlying dynamics. These considerations then lead to a time-domain variant
of TF-IRKA which produces (nearly) H2 optimal DDROMs from a single time-domain simulation. We
illustrate the effectiveness of TD-IRKA on several numerical examples. One such result for a linear
advection model is depicted in the figure above showing the relative H2 error vs reduced order, due to
TF-IRKA (using exact evaluations of H(σ) and H ′(σ)) and TD-IRKA (using only single time-domain
simulation). The figure shows that TD-IRKA almost exactly replicates the performance of TF-IRKA.

References

[1] M. S. Ackermann and S. Gugercin. Frequency-Based Reduced Models from Purely Time-Domain
Data via Data Informativity. arXiv:2311.05012, Jan. 2024.

[2] C. Beattie and S. Gugercin. Realization-independent H2-approximation. In 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC), pages 4953–4958, Maui, HI, USA, Dec. 2012. IEEE.

[3] A. M. Burohman, B. Besselink, J. M. A. Scherpen, and M. K. Camlibel. From data to reduced-order
models via moment matching. arXiv:2011.00150, Oct. 2020.

60



Model reduction for parametrized aerodynamics problems: error
estimation, adaptivity, and nonlinear approximations

Masayuki Yano1

1University of Toronto

We consider projection-based model reduction of parametrized nonlinear partial differential equa-
tions (PDEs) with applications to large-scale aerodynamics problems. Our emphasis is on transonic
flows with parameter-dependent shocks, which induce a parametric solution manifold with slowly de-
caying Kolmogorov n-width and hence is not amenable to linear model reduction. The key ingredients
of our nonlinear model reduction formulation are as follows: an adaptive high-order discontinuous
Galerkin (DG) method, which provides stable solution of convection-dominated problems while effi-
ciently controlling the full-order model (FOM) discretization error; nonlinear reduced approximation
spaces, which incorporate geometrically transformed solution snapshots to effect rapid approximation
of parametric solution manifolds with slowly decaying Kolmogorov n-width; the dual-weighted residual
(DWR) method, which provides effective error estimates for quantities of interest in both the FOM
and reduced-order model approximations; the empirical quadrature procedure (EQP), which identifies
point-wise reduced quadrature rules to enable efficient hyperreduction of high-order DG discretizations;
and a spatio-parameter adaptive greedy algorithm, which simultaneously trains the DG spaces, non-
linear reduced approximation spaces, and reduced quadrature rules to meet the user-specified output
error tolerance in a fully automated manner.

We demonstrate the efficacy and versatility of the framework using parametrized aerodynamics
problems governed by the Euler and Reynolds-averaged Navier-Stokes (RANS) equations in two and
three dimensions. We consider the following applications: flight parameter sweep, where we demon-
strate that the formulation provides efficient offline training and online speedup of several of orders
of magnitude; uncertainty quantification (UQ) of RANS turbulence model, where we employ greedy
algorithm with adaptively enriched training set to address UQ problems with many parameters; aero-
dynamic shape optimization, where we incorporate a trust-region method informed by DWR error
estimate to accelerate optimization on the fly; and data assimilation, where we accelerate ensemble-
based state estimation on the fly.
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Nonlinear model reduction for
high- and low-consequence applications

Kevin Carlberg1,2

1University of Washington
2AI at Meta

Model reduction has become a widely used tool for reducing the dimensionality and complexity
of simulating large-scale nonlinear dynamical systems across a wide range of problems. However, the
requirements of the application of interest have a profound implication on the proper way to approach
model reduction.

This talk will cover nonlinear model reduction for two vastly different application areas:

1. High-consequence many-query engineering applications characterized by extreme-scale parame-
terized initial value problems; and

2. Low-consequence real-time virtual-interaction applications characterized by free-form hand inter-
actions with geometrically complex deformable objects.

The first application imposes the following demands on reduced-order models: (1) accuracy as
measured in quantities of interest over the parameter domain, (2) low cost to enable simulation at
many parameter instances using large-scale computing resources, (3) certification in the form of er-
ror/uncertainty quantification, and (4) reliability in the form of error/uncertainty control. The talk
will briefly cover several methodological approaches to deliver these capabilities with a focus on finite-
volume simulations, including nonlinear-manifold kinematic approximation [5], structure preservating
projection [6], error modeling [7], and a posteriori adaptivity [1, 4].

The second application imposes the following demands: (1) accuracy as measured by human
perception and enjoyment of the interaction, and (2) low cost to enable real-time simulation on virtual
reality headsets. Certification and reliability are not important in such cases. The talk will introduce
a new software package for enabling real-time virtual interactions with deformable objects as well as
nonlinear model-reduction techniques that leverage implicit neural representations [2, 3] and contact
awareness [8] that are tailored to this problem.

Figure 1: Model reduction applied to low-consequence virtual interactions
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CoLoRA: Continuous low-rank adaptation for reduced implicit
neural modeling of parameterized partial differential equations

Jules Berman1 and Benjamin Peherstorfer1

1Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

This work introduces reduced models based on Continuous Low Rank Adaptation (CoLoRA) [1]
that pre-train neural networks for a given partial differential equation and then continuously adapt low-
rank weights in time to rapidly predict the evolution of solution fields at new physics parameters and
new initial conditions. CoLoRA provides nonlinear parameterizations that circumvent the Kolmogov-
orv barrier of transport-dominated problems and provide orders of magnitude speedups compared to
full models.

CoLoRA is a sequential-in-time (online adaptive) method that adapts nonlinear representations
in time. In contrast to dynamic low-rank methods, CoLoRA applies low-rank updates to the weight
matrices of multi-layer neural networks. The multi-layer structure greatly reduces the number of online
parameters that have to be updated while maintaining high expressiveness, which is key to achieving
online speedups. In addition, having network weights that depend on time allows one to combine
CoLoRA with variational approaches [2] to obtain reduced solutions that are Galerkin-optimal. This
opens the door to analyses, error bounds, and goes far beyond purely data-driven forecasting. In
particular, we show that variational approaches with CoLoRA can be formulated so that they preserve
physical quantities such as mass, momentum, and energy.

Numerical experiments show that CoLoRA requires a low number of training trajectories, which
makes it well suited for scarce data applications. CoLoRA achieves orders of magnitude speedups
compared to classical full models and outperforms existing state-of-the-art neural-network-based model
reduction methods such as operator learning in parameter count and accuracy in our experiments.
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Figure 1: Left: Purely data-driven CoLoRA (CoLoRA-D) is more than four orders of magnitude faster
than full models. If the governing equation is solved in a Galerkin-optimal variational sense (CoLoRA-
EQ), we obtain about two orders of magnitude speedups. Right: CoLoRA models achieve orders of
magnitude lower errors than linear model reduction methods. Details in [1].
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Time-evolving neural network representations for the reduced order
modelling of parametrised PDEs
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Neural networks have emerged as usefool tools for reduced order modelling of parametrized partial
differential equations (PDEs) since they offer universal function approximation and efficient treatment
of high-dimensional inputs. Evolutional deep neural networks (EDNNs) [1] represent the PDE solution
as the output of a neural network and and use a time-stepping scheme based on the PDE residual
to evolve the network parameters. Based on the paradigm of EDNNs, we develop a novel method
to efficiently solve parametric time-dependent PDEs, which obtains the solution for all parameter
instances from a single time-integration and does not require training data from a high fidelity solver.
This creates a promising surrogate model for use in many-query applications such as uncertainty
quantification, inverse problems and optimisation, especially in cases where reduced bases methods fail
to obtain efficient surrogates.
We particularly focus on extending EDNNs for problems of realistic complexity, by using positional
embeddings that can encode domains with geometrical features and automatically enforce Dirchlet,
Neumann and periodic boundary conditions on the predicted PDE solution fields [2]. Connections
between the eigenfunctions of the Laplace Beltrami operator and Fourier Features are drawn to explain
the success of the positional embedding layer.
As EDNNs are nonlinear models, the PDE dynamics are projected onto the tangent space of the neural
network at each time step, which requires the solution of a dense, and possibly ill-conditioned, linear
system. We argue that the Krylov solver LSMR is especially suited for this task as it avoids explicit
assembly of Jaccobians and enables scaling to larger neural networks and thus more complex problems.
We further propose a modified linearly implicit Rosenbrock method, which significantly alleviates the
time step requirements of stiff PDEs. We also showcase how automatically encoding invariants into
the neural network can simplify the loss terms and therefore speed up the learning process, which can
also be exploited in the training of physics informed neural networks (PINNs).
We showcase our method on the Korteweg-de Vries equation, and several parametrized PDEs, including
a nonlinear heat equation, advection-diffusion problems on domains with holes and 2D Navier Stokes
flow. We particularly highlight the challenges in balancing accuracy and computational time and
why EDNNs are promising surrogate models for parametrized PDEs with slow decaying Kolmogorov
n-width.
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A Generative Probabilistic Transformer Model for Ionospheric
Prediction
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The Earth’s ionosphere provides a medium for reliably transmitting radio waves far beyond the hori-
zon. However, it is a highly variable environment, so the development and operation of many radio
communications and radar systems that utilize the ionospheric channel require accurate forecasting
of the prevailing space weather conditions. We propose a new model for forecasting key ionospheric
parameters based on a modern deep learning architecture, the transformer [2]. Although transformers
were initially motivated by natural language processing (NLP), their flexibility and efficiency in pro-
cessing sequential data make them prime candidates for time series prediction.

Current state-of-the-art ionospheric forecast models are categorized roughly as physics-based or em-
pirical. Many physics models, such as SAMI3 [1], solve the ion and electron continuity and momentum
equations and allow for highly accurate nowcast and hindcast when parameterized with good initial and
boundary conditions. However, the ionosphere is a damped, driven system, so without knowledge of
the geomagnetic and solar drivers, the forecast skill often drops precipitously over relatively short time
windows. Additionally, the simulations themselves come with a high computational cost. On the other
hand, empirical ionospheric models are usually much cheaper to run, and the forecast horizon may
be much longer, since many conventional models like IRI combine mode decompositions and Fourier
analysis to generate stable, time-evolving models of the ionosphere. Nevertheless, the predictions are
limited to merely point forecasts of the statistical average.

To address these limitations, we developed a transformer-based model that generates forecasts in a
single step rather than sequentially. Moreover, instead of predicting a discrete time series, it predicts
distributions for the parameter of interest at each forecast time step. These learned probability densities
are generated from prior observations of the data and relevant geomagnetic and solar indices. The
attention mechanism of the transformer enables the model to dynamically weigh these inputs when
generating a forecast. Additionally, the model embedding layers learn predictive latent features from
the data that may not be captured in the canonical physical equations or are lost in the statistical
averaging of the empirical climatological models. We demonstrate these results with a model trained
on twenty-three years of ionospheric observations from around the globe, establishing its ability to
generalize to different geographic locations as a surrogate for larger computational models.
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Time Stepping in DMD via Machine Learning
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Dynamic Mode Decomposition (DMD) plays a significant role in reduced
order modeling (ROM), where it provides a non-intrusive means of identi-
fying fundamental modes and time scales which can facillitate parametric
exploration and uncertainty quantification. However, the problem of using
DMD based approaches for time stepping time-series from initial data is
challenging due to the dilemma of proper observable choices. Adressing this
issue should be of use across problems domains where DMD is used in ROM
or surrogate modeling contexts. We thus present a neural-network based
autoencoding method, [1, 2], which when coupled to an adaptive Hankel
DMD approach allows for learning models which are able to accurately fore-
cast chaotic time series. The method relies on three key innovations. The
first is a choice of loss-function in our machine learning algorithm which en-
sures both the one-step convergence and global stability of our DMD based
forecasts. The second is a global approximation to the Koopman operator.
The third is an epoch by epoch adaptation of the window size in a Hankel
DMD method which allows the machine to learn optimal numbers of en-
coded observables. We explore our method over the Lorenz-63, Rossler, and
Kuramoto–Sivashinksy equations, where we see excellent performance at re-
construction and even the potential for generating ARIMA like forecasts.
We also explore using a transfer-entropy like measurement to characterize
the encoding process over different strange attractors.
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Accelerating phase field simulations through time extrapolation
with Adaptive Fourier Neural Operators and U-Nets
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Computational simulation of phase field dynamics can be prohibitively expensive when using
standard numerical solvers. For example, high-fidelity simulations often use very small time steps due
to stability considerations, which can become a bottleneck when the target quantities of interest require
predictions far out in time. To address this challenge, we employ machine learning-based surrogate
models to help predict key dynamics forward in time, enabling predictions at time horizons far beyond
what is achievable through traditional methods alone. Specifically, we investigate a combination of two
popular deep learning architectures: a special kind of vision transformers, namely Adaptive Fourier
Neural Operators (AFNO) [2], and U-Nets [3]. We train them to predict future states with much coarser
time steps − thus encapsulating multiple high-fidelity steps within a single surrogate evaluation. While
this approach enables more rapid predictions through autoregressive evaluation of the surrogate, the
incurred error is essentially uncontrolled. To alleviate this, we adopt a hybrid prediction strategy which
alternates between surrogate evaluations − which leap forward in time − and high fidelity simulation
steps − which reduce errors and bring the system state back to the solution manifold. Moreover, we
show that including periodic retraining or online fine-tuning can provide further control on the error
growth. We illustrate these methods on two examples, a Cahn-Hilliard toy-problem and a chaotic
liquid-metal dealloying problem [1].
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Efficient linear Model Order Reduction for Friedrichs’ systems
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In this contribution we discuss the class of parametrized linear Friedrichs’ systems [1] i.e. opera-
tors of the form

Aµu :=

d∑

i=1

Ai
µ

∂u

∂xi
+ Cµu, Ai

µ ∈ [L∞(Ω)]m×m
sym ,

and the corresponding problems Aµu = f . Many classic partial differential equations (PDEs) can be
rewritten in this form, for example diffusion problems, linear advection, linear elasticity, the curl-curl
problem etc. In particular, we are interested in the approximability (in the sense of Kolmogorov)
of their solution set. While under certain conditions an exponential decrease of the Kolomogorov
N -width (i.e. good approximability) is known for diffusion problems, slowly decreasing lower bounds
have been shown for e.g. parametrized advection fields [2]. We do not aim to tackle the latter problem
(here, one should consider nonlinear approaches, see e.g. [4]) but instead aim to identify the subclass
of linearly approximable Friedrichs’ systems.

Using the theory of optimal test functions, we derive conditions on Aµ under which solutions to
Friedrichs’ systems can be exponentially approximated [3]. In addition to the known results for diffu-
sion problems we obtain theoretical justification to apply linear reduction techniques to e.g. advection-
reaction problems with prescribed velocity field ~b 6= ~bµ and parametrized reaction or the curl-curl
problem with parametrized premeability and permittivity. Numerical experiments using a greedy-
type algorithm confirm an exponential decay of the approximation error. For problems with spatially
strongly varying data functions a localized model order reduction approach based on solving local
problems with randomized boundary information (localized training) will also be discussed.
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Implicit Neural Representation Meets Interpretable Parameterized
Reduced-Order Modeling
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Learning interpretable reduced-order models of nonlinear PDE dynamics has been a long-standing
problem in data-driven modeling of dynamical systems. Early works can be traced back to Operator
Inference, Sparse Identification of Nonlinear Dynamics (SINDy), and SINDy-Autoencoder, among oth-
ers. However, these approaches still suffer from scalability issues in scalable nonlinear dimensionality
reduction. On the other hand, novel dimensionality reduction frameworks that leverage implicit neural
representation, such as Neural Implicit Flow, show great promise for scalable 3D PDE data, even on
dynamic meshes. Here, we propose a novel framework combining the idea of implicit neural represen-
tation with learning interpretable nonlinear dynamics from data. We compare our framework against
state-of-the-art operator learning techniques (e.g., FNO) and a recent related work called DINo that
leverages a vanilla feedforward neural network to learn the nonlinear latent dynamics. Furthermore,
we extend our interpretable reduced-order learning framework to a parametric setting. Our testing
cases range from forced 2D Navier-Stokes equations to incompressible flow over a 2D cylinder.
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Transformer accurately predicts outputs of parametric dynamical
systems with time-varying external inputs
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With the capability of modern computers for processing large amounts of data, machine learning (ML)
is being more and more applied in computational science. Dynamics of large-scale systems are being
learned by neural networks as a new kind of surrogate models. Many of the ML learning methods aim
to accurately predict the whole solution vector, for which autoencoders are often used to first compress
the data of the solution trajectories into a latent space with much lower dimension. Different data-
driven methods are then used to learn the dynamics in the latent space [1]. Most of these works consider
dynamical systems without external time-varying input signal. There are a few works on predicting
only the quantities of interests (QoIs) or outputs using ML [3] without data compression. There, long-
short-term-memory (LSTM) is used to predict the parametric outputs changing with external input
signals. However, LSTM is known to suffer from long-term predictions.
Transformer models have been proposed to overcome the difficulties of recurrent neural networks,
such as LSTM, for long-term prediction. Many transformer models have been suggested for time series
forecast [4]. Most of the transformer models are applied to predict daily life activities, such as customer
electricity usage, traffic road occupancy rate, etc. In this work, we explore the promising performance
of a transformer model: temporal fusion transformer (TFT) [2] on predicting outputs of parametric
dynamical systems with external time-varying input signals. It is shown in [2] that TFT is accurate in
long-term (multi-horizon) prediction of time series dependent on a complex mix of inputs, including
time-invariant (static) covariates, known future inputs, and time series that are only observed in the
past. The TFT model was used to predict the electricity usage, the traffic flow, etc., in a future
time period [2]. Translating these terminologies into those in system theory, we expect that the TFT
model should be able to do prediction of the outputs in both parameter and time domain. Based on
this understanding of TFT, we have successfully applied it to three parametric dynamical systems,
including systems with both physical/geometrical parameters and external input signals.
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Parametric Partial Differential Equations (PDEs) serve as indispensable tools in modeling physical phe-
nomena, finding applications across academic research and industrial sectors. However, the analytical
solutions for these equations are limited in scope, leaving the majority necessitating computationally
intensive numerical approximations. These approximations, while effective, often prove impractical for
scenarios requiring rapid computations, as in industry. Consequently, Reduced Order Models (ROMs)
have emerged as a promising avenue within computational sciences, offering streamlined computa-
tional frameworks for real-time simulations. Deep Learning algorithms have played a pivotal role in
advancing efficient ROM methods, characterized by their exceptional generalization capabilities and
reduced computational overhead. In this talk, we delve into the synergies between classical ROM
techniques and deep learning methodologies, exploring how the integration of the latter can elevate
the former. Our discussion spans innovative approaches aimed at addressing longstanding challenges
associated with ROMs, such as the curse of dimensionality, linearity constraints, and the abundance
of data required for constructing robust ROMs. By leveraging the power of deep learning, we aim to
not only enhance the performance of existing ROM frameworks but also pave the way for novel ap-
plications and advancements in computational modeling and simulation. Work in collaboration with
Dario Coscia, Nicola Demo, Guglielmo Padula, Niccoló Tonicello, Federico Pichi, Moaad Khamlich at
SISSA mathLab group

74



Certification of physics-informed neural networks for the solution of
parameterized partial differential equations
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Parameterized partial differential equations (PPDEs)

u ∈ X : Fµ(uµ) = 0 in Y ′, µ ∈ P ⊂ Rp (1)

arise to describe linear and nonlinear physical phenomena. Here, (X , ∥ · ∥X ), (Y, ∥ · ∥Y) are Banach
spaces, (Y ′, ∥ · ∥Y ′) is the dual space of Y and Fµ ∈ C(X ,Y ′) is a continuous function. These equations
often have to be solved either in a multi-query or in a real-time context for different parameters µ
resulting in the need for model order reduction.
The recent success in solving various PPDEs with neural networks, particularly with physics-informed
NNs (PINNs) (see e.g. [3], [1], [4]) suggests that they are a natural candidate for nonlinear model order
reduction techniques. Even though the range of PDEs that can be approximated seemingly well by
PINNs is quite impressive, a rigorous a posteriori error control is at least not straightforward.
Classical PINNs are usually trained with loss functions based upon the pointwise residual. The ad-
vantage of this is, that the method is meshfree, although it makes the error control difficult due to the
fact that a error-residual relation of the form

c∥Fµ(u
δ
µ)∥Y ′ ≤ ∥uµ − uδµ∥X ≤ C∥Fµ(u

δ
µ)∥Y ′

is only available if the problem (1) is well-posed. Therefore, the goal of our work is to certify PINN
approximations for linear and nonlinear PPDEs while preserving their broad applicability and keeping
the additional cost of discretizing the underlying physical domain Ω ⊂ Rd low. Given a trained PINN
Φµ approximating the solution u : P × Ω → R of a PPDE, we imbed the domain Ω into a simple
shaped domain □ and construct a computable upper bound η(Fµ(Φµ)) such that

∥uµ − Φµ∥X ≤ C · η(Fµ(Φµ)).

The advantage of this ansatz is, that discretizing □ is straightforward. Further, to evaluate η we use
Riesz-representations if Y is a Hilbert space and wavelet-methods as proposed in [2] in the case of a
Banach space. The evaluation is efficient due to the simple shape of the domain.
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We consider general linear PDE boundary value problems in the strong form on arbitrary bounded
Lipschitz-domains. For such problems, we recently presented a scale of meshless greedy kernel-based
collocation techniques [5]. The approximation spaces are incrementally constructed by carefully col-
lecting Riesz-representers of (derivative operator) point-evaluation functionals. The approximants are
obtained by generalized interpolation [3, Chap. 16]. The scale of methods naturally generalizes existing
approaches of PDE approximation [2] as well as function approximation techniques [1, 4]. Assuming
well-posedness and a stability estimate of the given PDE-problem, we can rigorously prove convergence
rates of the resulting approximation schemes [5]. Interestingly, those rates show that it is possible to
break the curse of dimensionality and potentially reach high input dimensions. For cases with polyg-
onal domains in small input space dimensions the schemes allow experimental comparison with, e.g.,
standard finite element methods. The strength of the procedure, however, is the ease of treating high-
dimensional input space dimensions due to the mesh-independence and ommitting spatial integrals. We
present numerical experiments demonstrating these aspects. When considering additional parametric
inputs, the overall procedure can be interpreted as an a-priori model reduction approach.
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In this talk, I will present a digital twin (DT) formulation for the structural health monitoring of
civil engineering structures [1], with a focus on railway bridges. A DT is a virtualization of a physical
asset built upon a set of computational models that dynamically update to persistently mirror a unique
asset of interest throughout its operational lifespan, enabling informed decisions that realize value.

The talk covers the health monitoring, predictive maintenance, and management planning of
civil structures. The asset-twin coupled dynamical system is encoded using a probabilistic graphical
model (PGM) [2] which provides a general framework for data assimilation, state estimation, pre-
diction, planning, and learning while accounting for the associated uncertainty. The assimilation of
high-dimensional multivariate time series describing the vibration response is carried out by exploiting
physics-based reduced order methods and deep learning models. The numerical models allow auto-
mated selection and extraction of optimized damage-sensitive features and real-time assessment of the
structural state of a bridge.
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A stochastic convolutional SPOD-Koopman reduced order model
for turbulent flow data
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We introduce a stochastic reduced-order model for modeling turbulent flows, leveraging Koopman
theory and Spectral Proper Orthogonal Decomposition (SPOD). This data-driven approach, not re-
liant on governing equations, utilizes Koopman analysis on time-delay observables, specifically SPOD
coefficients, for linear dynamics, and models nonlinear interactions as time-invariant forcing. The
model is validated through Monte Carlo simulations and applied to various turbulent experimental
and numerical fluid dynamics data, demonstrating its ability to accurately reproduce the dynamics
and statistics of turbulent flows.

Convolutional coordinates Forcing coefficients

   Dataset 

 Trajectories of SPOD modes:

Fourier convolution:

(a)

t

(b)

 1st step: Koopman analysis for convolutional coordinates

 2nd step: Regression + Closure

Input white noise

Dewhitening filter

(c) Modeling paradigm

Low-rank reconstruction: t

   Streaming snapshots

The SLICK model

Linear inverse model

I. C.s Stochastic input

Figure 1: Schematic of the stochastic ROM: (a) snapshot data; (b) model-order reduction and Fourier
convolution; (c) training phase. The example is experimental particle image velocimetry data of an
open cavity flow.

The SPOD basis decomposes the flow into energy-ranked structures that evolve coherently in
both space and time, optimally capturing the flow’s second-order statistics and dynamically significant
features. A significant aspect of the model is its stochastic closure, which addresses the residual error
inherent in the finite-dimensional approximation of turbulent dynamics. This closure models the residue
as a stochastic source, incorporating a dewhitening filter informed by the data to maintain second-
order flow statistics. The model employs the two-step process illustrated in Fig. 1: Koopman analysis
for linear dynamics and a regression-based method with a closure model for nonlinear interactions,
effectively capturing the essential features of turbulence for forecasting.
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Most model reduction methods employ the following two-step strategy: first, they find a com-
pressed representation of the state of the system at a particular time, then they obtain equations that
evolve the reduced set of variables that encode the state in this representation in time. Examples
of the first step include representing the state using proper orthogonal decomposition (POD) modes,
balanced truncation modes [2], or an autoencoder, and examples of the second step include Galerkin
and Petrov-Galerkin projection of the governing equations, and machine learning techniques to learn
the dynamics in the reduced set of variables.

In this work, we explore a different strategy and apply it to forced linear dynamical systems.
Instead of using a compact representation of the state, we use a compact representation of the entire
trajectory of the state over some time interval [0, T ] using a basis of modes that are functions of both
space and time. In particular, we use spectral POD (SPOD) modes, which both have analytic properties
that make them suitable for model reduction, and are known to provide an accurate representation
of trajectores using relatively few coefficients [1]. In fact, with the SPOD basis, the trajectory of a
system can be represented substantially more accurately with the same total number of coefficients
than it can if the coefficients pertain to a space-only basis, e.g., POD modes. Thus, if the coefficients
that encode the trajectory in the SPOD basis can be obtained accurately, the trajectory they represent
will be more accurate than any trajectory representable by the same number of POD coefficients. The
goal of the proposed method is therefore to solve accurately, and in a reduced manner, for the SPOD
coefficients given the forcing and initial condition.

The method works as follows. The SPOD coefficients at a particular frequency are given by the
Fourier transform of the state at that frequency multiplied on the left but the transpose of the SPOD
modes. We derive an analytic expression for Fourier transform of the state as a linear function of the
initial condition and forcing. By multiplying this expression of the left by the transpose of the modes,
we obtain an expression for the SPOD mode coefficients. Crucially, the linear operators involved can
be precomputed, leaving only small matrix-vector multiplications to be done online.

We demonstrate the method’s accuracy and CPU time on two examples: a linearized Ginzburg-
Landau system, and an advection-diffusion problem. In both cases, the proposed method achieves
roughly two orders of magnitude lower error than both POD-Galerkin and balanced truncation ap-
plied to the same problem. In fact, the proposed method achieves substantially lower error than
the projection of the solution onto the POD modes, which itself is a lower bound on the error for
any Petrov-Galerkin method with the same number of modes. The method is also comparable to
POD-Galerkin and balanced truncation in terms of CPU time, as we show it should be from scaling
analysis. We hope that the orders-of-magnitude accuracy improvement over balanced truncation, the
standard method for linear model reduction, will both prove useful in applications and increase interest
in space-time model reduction methods.

.
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In the absence of sharp timescale separation, reduced models of many-degree-of-freedom dynamical
systems can exhibit both memory and noise effects. The Mori-Zwanzig projection operator formalism,
originally developed by statistical physicists, has been found useful for capturing the effect of memory
and noise on steady-state statistics, including a variety of deterministic chaotic dynamical systems [7,
1, 2] as well as certain classes of stochastic systems [3, 6].
In this talk, I will review a data driven approach to model reduction motivated by a discrete-time
version of the Mori-Zwanzig formalism that makes use of Koopman operators (rather than the Liouville
operator used in continuous-time approaches) [5, 4]. Through a construction which we call Wiener
projection, we can relate the resulting models to classical Wiener filtering and derive a version of the
NARMAX representation of stochastic processes. The formalism can be naturally extended to general
dynamical systems with random forcing. Time permitting, I will discuss the relationship between the
discrete-time Mori-Zwanzig and other formalisms commonly used for data-driven modeling of nonlinear
dynamical systems, as well as some open issues with this approach to model reduction.
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Recent advances in data-driven techniques and digital-twin concepts have refreshed the interest in
integrating data with mechanistic and stochastic models [2]. Beyond the conventional Bayesian
inference approach, which calibrates model parameters with input data, there is a widespread interest
in dynamic model adaptation, which focuses on learning and adjusting the described dynamic. The
main challenge behind this class of problems is to find optimal adjustments of the high-dimensional
prior models, given the state variables that are often only partially observed.

(a) (b) (c)

Figure 1: Adaptation with random walk prior. (a) Density p(x|t) produced by the prior model. (b)
Density at t = 0.1, with and without correction in blue and red, respectively. (c) Correction u(x, t).

To address this challenge, we study the model-data adaptation problem in the context of stochastic
dynamics, where the Schrödinger bridge (SB) setting naturally arises [1]. To illustrate the problem
setup, consider a random variable Xt with values in R following the random walk as the prior
dynamical model. Our objective is to find the optimal correction force

u = argmin
u∗∈U

1

2
E
[∫ T

0
∥u∗(Xt, t)∥22dt

]
(1)

over a feasible set U , subject to the constraint that the dynamic has the measure µ at some finite
time t = T (see Fig 1). Besides this classical SB problem, we investigate more elaborated scenarios
where the prior is enriched by network models, such as Port-Hamiltonian and Kuramoto dynamics.
Furthermore, we present results on two interesting extensions of the SB, where instead of the full
distribution µ, the input data are limited to (a) noisy observables of the form h(X) + ϵ, where ϵ is
the noise and h(.) the map; and (b) moments E[Qi(X)], where Qi(.) are polynomials. By providing
novel solution algorithms tailored to these realistic variations, we demonstrate accessible and robust
model-data adaptations for complex dynamical systems.
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The present talk concerns with the following parametric eigenvalue problem discretized by means
of the finite element (FE) method: for all µ ∈ M, find real eigenvalues λh(µ) and non-vanishing
eigenfunctions uh(µ) ∈ Vh such that

a(uh, vh;µ) = λh(µ)(uh, vh)L2 ∀vh ∈ Vh,

where M ⊂ Rp is the parameter space, Vh is the FE subspace of the Hilbert space V and a(·, ·, µ) is
elliptic in V for all µ ∈ M. In particular, we are interested in detecting the behavior of the hypersurfaces
defined by {λh,j(µ)}j≥1 as the parameter µ varies in M. These hypersurfaces may intersect, leading
in general to multiple eigenvalues at one point of intersection. When a crossing occurs, clearly the
eigenvalues involved in the crossing are not smooth functions of the parameters and the corresponding
eigenspaces are not even continuous if the eigenvalues are sorted by their magnitude. The question
addressed in [1] concerns the matching of the eigenvalues across their intersections so that a new sorting
of the eigenmodes can be introduced that restores the smoothness of eigenvalues and eigenspaces with
respect to the parameters.

To better define our problem, we restrict the range of eigenvalues we are interested in to an
interval Iλ = [λmin, λmax]. Consequently, we only examine the hypersurfaces in the region M×Iλ. This
implies in particular that hypersurfaces can enter or exit this region of interest when the corresponding
eigenvalues cross the values of λmin or λmax.

We design an adaptive algorithm which minimizes the number of FE solves to guarantee the correct
tracking of the eigenvalues within a prescribed tolerance. The proposed scheme can be interpreted as
a greedy model order reduction (MOR) method, where the greedy selection of the parameter values is
guided by the a-priori cost functional based on how close the eigenvalues and the eigenfunctions at each
pair neighboring parameter µi, µk are to each other. The a-priori phase is followed by the application
of a suitable a-posteriori strategy, based on the orthogonality of the eigenfunctions. If the a-posteriori
error indicator detects a mistake in the output of the a-priori phase, we mark the subinterval [µi, µk]
for refinement. To tackle the curse of dimensionality, at a given refinement level, a sparse grid approach
is adopted for the construction of the grid of the next level.

.
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Line-Search Based Optimization With Online Model Reduction
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When applying model reduction to optimization, an online only approach can help to alleviate
the expense of model construction by leveraging locally accurate models. We propose a line-search
algorithm that uses objective function models with tunable accuracy to solve smooth optimization
problems with general nonlinear equality constraints. This algorithm specifies how objective function
models can be used to generate new iterates in the context of line-search methods, and specifies
approximation properties these models have to satisfy. Moreover, the algorithm assumes that a bound
for the model error is available and uses this bound to explore regions where the model is sufficiently
accurate. The algorithm has the same first-order global convergence properties as standard line-
search methods. However, this algorithm uses only the models and the model error bounds, but never
directly accesses the original objective function. Examples include problems where the evaluation
of the objective requires the solution of a large-scale system of nonlinear equations. The models
are constructed from reduced order models of this system. Numerical results for partial differential
equation constrained optimization problems show the benefits of the proposed algorithm. Extensions
to constraint optimization are presented.
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Stabilizing dynamical systems in science and engineering is a challenging task, in particular when only
limited amounts of data are available. In this work, we propose an adaptive data sampling scheme
for generating small yet informative data sets for the task of stabilizing dynamical systems via the
controller inference approach [1]. The key is to generate suitable input signals for the data generation
via intermediate low-dimensional controllers that stabilize the system dynamics over limited subspaces.

As we have shown in our previous work [1], the sample complexity of constructing stabilizing state-
feedback controllers directly from data scales with the intrinsic dimension of the system rather than
its state or input dimensions. However, to use a data set of that minimal or any size for the task of
stabilization, the data must contain the right information about the task. In particular in the case of
unstable systems, the collection of large numbers of informative data samples is typically prevented
by the instabilities that yield redundant or destructive system behavior. This leads to the question
of how to generate data that is informative for system stabilization. In this presentation, we provide
an approach that is based on our previous theoretical findings and related to the idea of iterative
controller design, which allows us to adapt the input signal online for appropriate data generation and
which avoids catastrophic unstable system behavior in the process. Numerical experiments including
fluid dynamics (Figure 1), chemical reactors, power networks and particle models demonstrate that
this adaptive approach further improves on the low-dimension controller inference method.

Figure 1: The behavior of laminar flows behind obstacles tends to unstable oscillations after perturba-
tion (left) in contrast to the desired steady state behavior (right). Using the data from our proposed
adaptive sampling approach only 10 system queries are needed to stabilize the system, while classical
low-dimensional controller inference needs one order of magnitude more evaluations.
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We present a methodology for the extraction of parametric reduced order models (pROMs) for
systems governed by the Navier-Stokes equations when they undergo a supercritical Hopf bifurcation.
The purpose of the constructed models is to enable the design of closed-loop control laws that robustly
stabilize the system.

The incompressible Navier-Stokes equations are the system of partial differential equations

E
∂U

∂t
= N (U, f , ϵ), (1)

where the state U is comprised of the velocity and pressure fields, E denotes projection onto the
velocity space, N is the nonlinear Navier-Stokes operator, and f(t) is an external forcing term. Here
the model parameter ϵ is considered in a neighborhood of a critical point ϵ = 0 where the bifurcation
occurs. The starting point of our approach is the weakly nonlinear analysis from [1, 2] where the
state U of (1) is asymptotically expanded as U = U0 +

√
ϵU1(t, ϵ) + ϵU2(t, ϵ) +

√
ϵ
3
U3(t, ϵ) + ...

around the equilibrium point at the critical value ϵ = 0. Our key contribution is to consider a forcing
of the form f(t) = E(t, ϵ)fE + c.c., which generalizes existing approaches that consider E(t, ϵ) to be
harmonic with a constant frequency, and enables the design of closed-loop controllers. Substituting
the asymptotic expansions of the state and the forcing into the governing equation (1) leads to a series
of linear equations at various orders

√
ϵ
i, which are successively solved. At the order

√
ϵ
3 we obtain

the forced Stuart-Landau equation

dA

dt
= ϵa0A− a1A|A|2 + a2E(t, ϵ), (2)

for the evolution of the global mode associated with the Hopf bifurcation, which together with the
expansion of the state serves as a surrogate model of (1). The Stuart-Landau model provides a reliable
approximation of the nonlinear system (1) for a broad range of initial conditions and a reasonable set
of parameter values. At the same time, our formulation accounts for time-varying forcing, enabling
the design of closed-loop control laws that can be implemented in real time.

We exploit this methodology to model and control the flow around both a single cylinder and two
cylinders in tandem configurations. Furthermore, we present an alternative data-driven approach where
the Stuart-Landau coefficients are fitted from data in the least-squares sense. This is also convenient
for other important classes of forced systems which exhibit supercritical Hopf bifurcation.
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In this talk, we are concerned with model order reduction in the context of iterative regularization
methods for the solution of inverse problems arising from parameter identification in elliptic partial dif-
ferential equations. Such methods typically require a large number of forward solutions, which makes
the use of the reduced basis method attractive to reduce computational complexity. However, the
considered inverse problems are typically ill-posed due to their infinite-dimensional parameter space.
Moreover, the infinite-dimensional parameter space makes it impossible to build and certify classical
reduced-order models efficiently in a so-called offline phase. We thus propose a new algorithm that
adaptively builds a reduced parameter space in the online phase. The enrichment of the reduced pa-
rameter space is naturally inherited from the Tikhonov regularization within an iteratively regularized
Gauss-Newton method. Finally, the adaptive parameter space reduction is combined with a certified
reduced basis state space reduction within an adaptive error-aware trust region framework. Numerical
experiments are presented to show the efficiency of the combined parameter and state space reduction
for inverse parameter identification problems with distributed reaction or diffusion coefficients. The
talk is based on [1].
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Surrogate models utilize compression and embedding techniques to reduce computational cost and
improve efficiency of simulating physical systems or forward processes while maintaining interpretability
and accuracy of subsequent tasks such as solving an inverse problem. We consider a novel approach
based on data-driven scientific machine learning tools for large-scale inverse problem with the aim to
reconstruct a quantity of interest x ∈ Rn given observations b ∈ Rm perturbed by additive noise and
a computationally challenging and ill-conditioned forward process A : Rn → Rm.

Figure 1: Paired autoencoders for inversion and
regularization with sparsity features in the latent
spaces. Inversion and forward propagation can be
efficiently performed with sparse mappings mf (for-
ward) and mi (inverse) between the latent space zx
and zb.

Our goal is to learn autoencoder mappings
for dimensionality reduction of the inverse pro-
cess. Let a = d ◦ e ≈ A be an autoencoder, where
e : Rn → Rr denotes an encoder and d : Rr → Rn

denotes the corresponding decoder, see Figure 1.
Instead of utilizing a single autoencoder to learn
a mapping x 7→ b, we propose a decoupled ap-
proach for surrogate modeling, where unsuper-
vised learning approaches are used to efficiently
represent the input x and target spaces b sepa-
rately, and a supervised learning approach is used
to represent the mapping from one latent space to
another. We refer to this approach as paired au-
toencoders for inversion and regularization (pair).
Standard autoencoders reduce dimensionality of
the latent space. In our approach, we instead
embed the latent variable in a large dimensional
space while enforcing a sparse representation in
the latent space. One may formulate the encoder
e( · ; θe) decoder d( · ; θd) learning by

min
θe,θd

E ∥d(e(x; θe); θd)− x∥22 + µ ∥e(x; θe)∥1

where θe, θd denote the network parameters and
E the expectation over the input.

This approach confers several advantages compared to, for instance, full mapping approaches.
First, the reduced approach decouples the model and the dimension reduction processes. Thus, un-
supervised learning techniques can be used for autoencoders. Different sizes of datasets can be used
in the input and target spaces. For example, in medical imaging, datasets corresponding to observed
sinograms may be significantly larger than datasets of true images/phantoms. Furthermore, the train-
ing of the autoencoders is independent and can be run in parallel. Utilizing the sparsity constraints
allows for efficient representation of forward models such as in medical imaging.
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Data assimilation (DA) plays a pivotal role in diverse applications, ranging from climate predictions
and weather forecasts to trajectory planning for autonomous vehicles. A prime example is the widely
used ensemble Kalman filter (EnKF), which relies on linear updates to minimize variance among the
ensemble of forecast states. Recent advancements have seen the emergence of deep learning approaches
in this domain, primarily within a supervised learning framework. However, the adaptability of such
models to untrained scenarios remains a challenge. In this study, we introduce a novel DA strategy that
utilizes reinforcement learning (RL) to apply state corrections using full or partial observations of the
state variables. Our investigation focuses on demonstrating this approach to the chaotic Lorenz ’63 sys-
tem, where the agent’s objective is to minimize the root-mean-squared error between the observations
and corresponding forecast states. Consequently, the agent develops a correction strategy, enhancing
model forecasts based on available system state observations. Our strategy employs a stochastic action
policy, enabling a Monte Carlo-based DA framework that relies on randomly sampling the policy to
generate an ensemble of assimilated realizations. Results demonstrate that the developed RL algorithm
performs favorably when compared to the EnKF. Additionally, we illustrate the agent’s capability to
assimilate non-Gaussian data, addressing a significant limitation of the EnKF.
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We consider the Bayesian smoothing problem of inferring the initial state of a linear dynamical system,
given noisy linear output measurements after the initial time. The ensemble Kalman inversion (EKI)
method is an adjoint-free iterative method for estimating the posterior distribution of this inference
problem. However, accuracy of EKI depends on having a large ensemble of particles, where each
particle requires evolving the dynamical system. When the system is high-dimensional, the cost per
particle is high, leading to EKI either having prohibitive cost or high sampling error. In this work,
we use Balanced truncation for Bayesian smoothing (BTBS) to accelerate solution of the smoothing
problem via EKI. BTBS is a model reduction method that adapts balanced truncation, a system-
theoretic projection-based model reduction method, to the Bayesian smoothing problem. Numerical
results show that reduced EKI models achieve the same accuracy as the full EKI algorithm with
multiple-orders-of-magnitude reduction in computational cost.
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We propose an accelerated geometric Markov chain Monte Carlo (MCMC) method for fast and consis-
tent solutions to infinite-dimensional nonlinear Bayesian inverse problems. Such problems are relevant
for inferring uncertain parameters of continuum physical systems based on sparse, noisy, and indirect
observations. Geometric MCMC methods [1] employ proposals that adapt to posterior local geometry
and thus can generate high-quality Markov chains for posterior sampling. However, these methods
require computing a Hessian approximation of the likelihood at each chain position, which can be
costly when the parameter-to-observable (PtO) map is defined through large-scale partial differential
equations (PDEs).
To address this challenge, we consider a delayed-acceptance geometric MCMC method that utilizes a
neural operator surrogate of the PtO map to alleviate cost while retaining posterior consistency. To
achieve a superior quality-cost trade-off, the surrogate must make fast and accurate predictions on
both the observable and its parametric derivative. In this work, we leverage an infinite-dimensional
formulation of derivative-informed operator learning [2] utilizes input-output-derivative samples. Such
an operator learning scheme leads to derivative-informed neural operators (DINOs) that accurately
predict both the observable and its parametric derivative at a significantly lower training cost than
conventional training based on input-output samples. Our numerical examples on challenging prob-
lems, such as coefficient inversion for nonlinear diffusion–reaction and hyperelastic material properties
discovery, show that (i) DINO-accelerated geometric MCMC can reliably generate effective posterior
samples around 3–9 times faster than geometric MCMC and 60–97 times faster than MCMC based on
prior geometry (e.g., preconditioned Crank–Nicolson), and (ii) DINO-accelerated geometric MCMC
is more cost-effective than geometric MCMC if one aims to collect more than merely 10–25 effective
posterior samples.
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1University of Michigan, Department of Mechanical Engineering
2University of Michigan, Department of Aerospace Engineering

Multi-fidelity variance-reduction techniques (e.g., multi-fidelity Monte Carlo [3], approximate con-
trol variates [2, 1], and multilevel BLUEs [4]) have seen considerable attention in recent years, in many
cases providing orders-of-magnitude computational savings in estimating statistics of a high-fidelity
model. Given the exact covariance matrix between model fidelities and the computational costs of
each model, these methods solve the multi-fidelity sample allocation strategy and produce an optimal
estimator by minimizing variance while remaining unbiased with respect to the highest fidelity model
available. However, the covariance matrix across model fidelities is usually not known a priori and is
instead often estimated via pilot sampling or reinforcement-learning techniques [5] in conjunction with
the sample covariance formula. Depending on the model ensemble available, this covariance estimation
can be costly or inaccurate, leading to suboptimal estimators or prohibitive offline costs. Furthermore,
most multi-fidelity estimators are not designed with an outer design optimization loop in mind, where
covariance information and thus estimator properties may vary substantially from design to design. In
this work, we explore probabilistic surrogate methods to model the covariance information across the
domain, adaptively taking additional pilot samples only when the uncertainty in the covariance at a
given location in the domain is too high for accurate multi-fidelity estimation. As the overall stochastic
optimization process converges and the covariance uncertainty is reduced, far fewer pilot samples are
needed and the overall optimization cost is greatly reduced.
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Reduced Basis Methods for Domain Uncertainty Quantification of
Periodic Gratings

R. Aylwin1, J. Pinto2, and G. Silva-Oelker3

1Universität Ulm
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March 1, 2024

We present a reduced basis method and accompanying implementation for the computation of
statistical information of scattered electromagnetic fields by two-dimensional periodic gratings and
its resolution through the boundary element method. In particular we build a surrogate model that
allows for the fast and precise computation of first and second order moments of the scattered field
(and smooth quantities of interes, e.g., the diffraction efficiency) in the setting of uncertain geometry,
simulating manufacturing errors and wear and tear of the optical devices. The approach allows us
to avoid the small perturbation assumption required by, e.g., the Fist-Order-Second-Moment (FOSM)
approach considered in [5] and treat perturbations of arbitrary size. Moreover, we consider the efficient
estimation of failure probabilities in the context of reliability analysis of optimal structures for the
applications considered in [4, 2]. Furthermore, we solve the periodic problem through the Boundary
Element Method and the approach developed in [1, 3]. Applications in the shape optimization of
periodic gratings and the consideration of statistical information in optimization algorithms.
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A streamlined workflow for model reduction with application to
aerodynamic and thermal analyses

Patrick Blonigan1, Eric Parish1, Elizabeth Krath1, John Tencer1, Andrew Kurzawski1, and
Francesco Rizzi2
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Projection-based reduced-order models (ROMs) of high-fidelity computational physics simulations
have shown great potential to accelerate outer-loop analyses such as uncertainty quantification and
optimization [1, 2, 3]. Translating these algorithms into methods that are usable by non-experts
requires easy-to-use tools and workflows for sampling the full-order model (FOM) at desired locations,
constructing the ROM to a desired tolerance, and deploying the ROM in the analysis of interest. This
presentation covers a Python-based library being used at Sandia, called "rom-tools-and-workflows",
which facilitates both the offline construction of the ROM as well as its online deployment. The library
is part of the Pressio project and provides a suite of tools for constructing reduced subspaces, hyper-
reduction, and relies on simple APIs that enable pre-defined workflows such as multifidelity UQ with
a coupling to Dakota and greedy sampling.

The presentation will outline these workflows with demonstrations on two example problems. The
first example is ROM-accelerated forward UQ for a computational fluid dynamics problem. Specifically,
we present forward uncertainty propagation of a high-speed compressible flow with respect to uncertain
turbulence model parameters in the Reynolds-Averaged Navier-Stokes equations. We couple Sandia’s
Parallel Aerodynamics and Reentry Code (SPARC) with Pressio to implement a projection-based
ROM, and we drive the outer-loop analysis with rom-tools-and-workflows and Dakota. We show that
ROMs reduce the variance of mean estimators for a given computational budget and provide accurate
output distributions.

The second example we consider is the solution of a thermal inverse problem. In this example,
we infer material properties and boundary conditions given temperature readings at a handful of loca-
tions over time, using ROMs implemented in Sierra-Thermal/Fluid and Pressio. We show that ROMs
can bring down the cost of inverse problems while finding similar optimal solutions to more expensive
analyses that leverage the full-order high-fidelity model alone.

SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525
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Extended tensor decomposition model reduction method:
application to real-time additive manufacturing residual stress

predictions and inverse problems

Ye Lu

University of Maryland, Baltimore County

Simulation-based science and engineering, including design, uncertainty quantification, and gen-
eral inverse problems, usually necessitate fast responses of numerical models. Despite the significant
improvement of the computer hardware over the last decades, real-time simulations of large-scale non-
linear systems, such as additive manufacturing, are still intractable with conventional finite element
analysis (FEA). The repetitive nonlinear FEA makes general inverse problems computationally pro-
hibitive.

To address the above challenges, this work presents an eXtended Tensor Decomposition (XTD)
method [1] for nonlinear model reduction. The idea of XTD is to introduce a sparse non-separated
enrichment to the conventional tensor decomposition based model reduction methods, such as proper
generalized decomposition [2, 3, 4], to enhance the efficiency of model reduction for dealing with lo-
calized highly nonlinear problems, such as additive manufacturing or fracture problems. The XTD
method can significantly improve the approximation accuracy and the reducibility (compressibility) of
such problems and makes the nonlinear model reduction much more efficient.

The method has been successfully applied to parametric elastoplastic problems for real-time ad-
ditive manufacturing residual stress predictions and inverse problems, including uncertainty quantifi-
cation. Significant speedups are obtained with comparison to full-order FEA. The proposed method
can enable a powerful computational framework for many science and engineering problems, such as
manufacturing process design under uncertainty.
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Model reduction of large-scale sparse systems in MATLAB and
Octave with the MORLAB toolbox
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The modeling of real-world applications often results in linear dynamical systems of the form

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

with E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m, described by a large number n of differential
and algebraic equations. Model order reduction is the remedy to construct cheap-to-evaluate surrogates
of similar structure to (1) by reducing the number of describing equations to r ≪ n.
For the use of model reduction methods in practice, potentially by users who may have never been
introduced to the underlying theory, efficient implementations of these methods with intuitive inter-
faces are needed. The MORLAB, Model Order Reduction LABoratory, toolbox [1] is providing such
implementations in MATLAB and Octave. The toolbox is open source and freely available, has a
unified framework for all implemented methods that allows for quick exchanges of routines and easy
comparisons between methods, and it is portable to all different operating systems on which bare
MATLAB and Octave installations are available. While being originally developed for medium-scale
(n ∈ O(103)) dense systems, since its latest version, the toolbox now supports the reduction of systems
with large-scale (n ∈ O(105) and larger) sparse coefficient matrices via balancing-related methods such
as balanced truncation, as well as Krylov subspace methods such as moment matching. To this end,
the Matrix Equation Sparse Solvers (M-M.E.S.S.) library [2] is used as backbone of MORLAB for the
efficient implementation of solvers for matrix equations such as Lyapunov and Riccati equations as
well as the correct handling of systems with structured differential-algebraic equations.
This poster describes the latest release, version 6.0, of the MORLAB toolbox. It features new imple-
mentations of balancing-related and Krylov subspace model reduction methods for large-scale sparse,
linear systems.
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Reduction of periodic systems with partial Floquet transforms

S. Bender1 and C. Beattie1

1Department of Mathematics, Virginia Tech, Blacksburg, 24061, VA, United States

We consider systems of single input, single output systems with periodic parameters:

ẋ(t) = A(t)x(t) + b(t)u(t), y(t) = c(t)∗x(t), (1)

where A(t) ∈ Rn×n, b(t), c(t) ∈ Rn all have period T . Such systems arise as the result of modeling
phenomena related to fluid dynamics, structural mechanics, and electronic circuits. Specifically, lin-
earization around known periodic orbits of a nonlinear model produces a periodic system of partial
differential equations, then semi-discretization in space yields large scale linear time-periodic (LTP)
dynamical systems. The need to simulate responses to a variety of inputs motivates the development
of effective model reduction tools for these systems.
While the research on model reduction for LTP systems is limited, there is a sizeable amount of litera-
ture devoted to control, spectral analysis, and harmonic response of LTP systems [1, 2, 3]. Essential to
the advances developed in these settings is the Floquet transform: If A(t) is locally integrable for t ∈ R,
then there exists an absolutely continuous, T -periodic, invertible matrix-valued function P(t) ∈ Cn×n

such that the time-varying change of basis determined by z(t) = P(t)−1x(t) (the Floquet transform)
transforms solutions, x(t), satisfying the equation ẋ(t) = A(t)x(t) to solutions, z(t), satisfying the
constant coefficient differential equation ż(t) = R0z(t), where R0 ∈ Cn×n [4]. Applying this Floquet
transform to (1) results in a dynamical system whose time dependency is isolated to the input and
output ports:

ż(t) = R0z(t) +P(t)−1b(t)u(t), y(t) = c(t)∗P(t)z(t). (2)

Computation of the Floquet transform is expensive, making it intractable for large scale systems.
Our research explores ways constructing a partial Floquet transform. Beyond being computationally
feasible, our approach simultaneously isolates the time dependency to the input and output ports and
produces an effective reduced order model.
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Randomized Symplectic MOR for Hamiltonian Systems
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Symplectic model order reduction (MOR) [6, 7] is used to reduce the computational complexity
of high-dimensional Hamiltonian systems in a structure-preserving way. The mathematical structure
of such systems ensures conservation of the Hamiltonian (i.e., the energy of the system) and under
certain assumptions stability properties. In contrast to classical basis generation techniques such as
the Proper Orthogonal Decomposition (POD), which do not ensure that the reduced order model
(ROM) is a Hamiltonian system, symplectic MOR transfers the Hamiltonian structure to the ROM.
Additionally, numerical experiments often show advantages of symplectic MOR compared to a classi-
cal, non-structure-preserving MOR [7]. To compute a symplectic basis, techniques like the complex
SVD (cSVD) [7] or the SVD-like decomposition (SVD-like) [2] can be used. However, for large-scale
Hamiltonian systems, computing the low-rank matrix approximations required by these techniques can
lead to prohibitively high computational costs during the offline-phase.
We present the randomized cSVD (rcSVD) and the randomized SVD-like to reduce this computational
costs. We provide numerical experiments that highlight their computational efficiency while preserving
the approximation quality compared to their classical versions [4]. We further derive error bounds which
show that the rcSVD is quasi-optimal in the set of ortho-symplectic matrices. This means that with
a proper choice of hyperparameters, the projection error of the rcSVD is at most a constant worse
than that of the cSVD [3]. As alternative approach, we accelerate the computation of the reduced
Hamiltonian system in the offline-phase by random sketching techniques where inner products of high-
dimensional matrices are approximated using randomized subspace embeddings. We follow ideas from
[1] where linear, time-independent systems are approximated by their random sketch. These techniques
significantly reduce computational complexity and memory requirements by avoiding operations with
and storing of the full basis vectors. We merge these ideas with the concepts of symplectic MOR [5].
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Entropy stable reduced order modeling of nonlinear conservation
laws using discontinuous Galerkin methods

Ray Qu1 and Jesse Chan1

1Department of Computational Applied Mathematics and Operations Research, Rice University

We generalize the construction of entropy stable reduced order models (ROMs) for nonlinear
conservation laws from finite volume methods (FVM) [1] to high order discontinuous Galerkin (DG)
methods. This generalization preserves entropy stability while simplifying the hyper-reduction step by
utilizing the Caratheodory pruning for the hyper-reduction of boundary conditions.
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Discovering Quadratic Representations of PDEs:
Algorithms and Software
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Nonpolynomial and nonquadratic PDEs are used to describe complex dynamical processes in
science and engineering. Some examples are the cubic FitzHugh-Nagumo model, which describes the
activation and deactivation dynamics of a spiking neuron; the also cubic Brusselator model, used to
predict oscillations in chemical reactions; and the quartic model of the nonadiabatic tubular reactor,
which describes the evolution of the species concentration and temperature. Transforming, or lifting,
such systems into quadratic form (as introduced for MOR in [1]) has been used to obtain better
variables for model learning [2], for system-theoretic MOR [3] and data-driven MOR [4]. In all of
these, the lifting transformation to quadratic form was done by hand on either the ODE or PDE. This
is tedious, error-prone, and often results in suboptimal lifted transformations.

Quadratization of PDEs is the process of finding a lifting transformation that turns a PDE system
with nonpolynomial or higher-degree polynomial drift into systems with quadratic drift. To obtain a
quadratic form, it is often required to add new variables to the system. The set of variables introduced
is called a quadratization. For illustration, consider the PDE describing the evolution of the space and
time-varying function u(t, x) as

ut = uxu
2 (1)

To quadratize (1) we introduce the variable y := u2 and calculate its first derivative in x: yx = 2uxu,
which allows us to write

yt = 2uxu
3 = 2uxuy = yxy and ut = uxy. (2)

This is a quadratic equation in u(t, x) and y(t, x), so that the set {u2} is a quadratization for (1).
There exist quadratization algorithms and software for ODE models, e.g., [5], yet they cannot

directly handle the PDE case. We present an algorithm and accompanying software that finds optimal
quadratizations of complex PDE systems, where optimality is defined in terms of the number of the
dimension of the quadratization. The presented algorithm searches a combinatorial tree of possible
transformations, uses branch-and-bound techniques to curb its computational complexity, and outputs
a minimal set of variables that effectively quadratize a PDE system. To the best of our knowledge,
these are the first results of automated quadratization for PDEs.
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Conservative Reduced Order Modeling of the Plasma Kinetic
Equations

Opal Issan1 and Boris Kramer1
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La Jolla, CA, USA

We propose a data-driven projection-based reduced-order model (ROM) to reduce the computational
cost of the spectral plasma solver (SPS) of the Vlasov-Poisson equations, which describe the equations of
motions of collisionless electrostatic plasma. The SPS solver is based on a Fourier spectral expansion in
space, asymmetrically-weighted Hermite expansion in velocity, and an implicit temporal integrator [1,
2]. The main advantages of the SPS solver are its conservation and fluid-kinetic coupling property,
where the first three expansion coefficients correspond to the macroscopic description of the plasma,
while higher-order expansion coefficients correspond to higher-order fluid moments capturing the kinetic
effects of the plasma. A core contribution of this work is to introduce a ROM for the kinetic effects
into SPS while keeping the macroscopic description intact. We show that this preserves its fluid-kinetic
property, and conserves mass, momentum, and energy. Moreover, the suggested strategy overcomes
the nonlinear bottleneck by efficiently handling convolutions. The numerical results show that our
method can adequately emulate the SPS simulations at a fraction of the cost, which we test on the
following benchmark problems: 1D-1V weak Landau damping, 1D-1V bump-on-tail instability, 1D-1V
two-stream instability, and 2D-2V current-driven ion acoustic instability.
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Robust Implicit Adaptive Low Rank Time-Stepping Methods for
Matrix Differential Equations

Daniel Appelö1 and Yingda Cheng1

1Department of Mathematics, Virginia Tech

In this work, we develop implicit rank-adaptive schemes for time-dependent matrix differential equa-
tions. The dynamic low rank approximation (DLRA) is a well-known technique to capture the dynamic
low rank structure based on Dirac-Frenkel time-dependent variational principle. In recent years, it has
attracted a lot of attention due to its wide applicability. Our schemes are inspired by the three-step
procedure used in the rank adaptive version of the unconventional robust integrator (the so called BUG
integrator) [1] for DLRA. First, a prediction (basis update) step is made computing the approximate
column and row spaces at the next time level. Second, a Galerkin evolution step is invoked using a
base implicit solve for the small core matrix. Finally, a truncation is made according to a prescribed
error threshold. Since the DLRA is evolving the differential equation projected on to the tangent space
of the low rank manifold, the error estimate of the BUG integrator contains the tangent projection
(modeling) error which cannot be easily controlled by mesh refinement. This can cause convergence
issue for equations with cross terms.
To address this issue, we propose a simple modification, consisting of merging the row and column
spaces from the explicit step truncation method together with the BUG spaces in the prediction step.
In addition, we propose an adaptive strategy where the BUG spaces are only computed if the residual
for the solution obtained from the prediction space by explicit step truncation method, is too large.
We prove stability and estimate the local truncation error of the schemes under assumptions. We
benchmark the schemes in several tests, such as anisotropic diffusion, solid body rotation and the
combination of the two, to show robust convergence properties.
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An online algorithm to identify and control unknown PDEs
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We address the control of Partial Differential equations (PDEs) with unknown parameters. Our objec-
tive is to devise an efficient algorithm capable of both identifying and controlling the unknown system.
We assume that the desired PDE is observable provided a control input and an initial condition. The
method works as follows, given an estimated parameter configuration, we compute the corresponding
control using the State-Dependent Riccati Equation (SDRE) approach. Subsequently, after computing
the control, we observe the trajectory and estimate a new parameter configuration using Bayesian
Linear Regression method. This process iterates until reaching the final time, incorporating a de-
fined stopping criterion for updating the parameter configuration. We also focus on the computational
cost of the algorithm, since we deal with high dimensional systems. To enhance the efficiency of the
method, indeed, we employ model order reduction through the Proper Orthogonal Decomposition
(POD) method. The considered problem’s dimension is notably large, and POD provides impressive
speedups. Further, a detailed description on the coupling between POD and SDRE is also provided.
Finally, numerical examples will show the accurateness of our method across.
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Model order reduction for parabolic PDE constrained optimization
in a space time variational setting

Martin Alexander Reinhold1, Nina Beranek1, Linus Heinzelmann1, and Karsten Urban1

1Ulm University, Institute of Numerical Mathematics

In this talk we want to present research regarding parameterized time-dependent optimization
problems. Using a tracking type objective function, this problem reads as:

min
(y×u)∈Y×U

J(y, u;µ) =
1

2
(y − yd,µ, y − yd,µ)L2(I;L2(Ω) +

λ

2
(u, u)L2(I;L2(Ω) (1)

s.t. Aµy − Fµu− cµ = 0 ∈ Z ′, (2)

where the state equation (2) is a parametric linear parabolic PDE formulated in the space-time varia-
tional setting, as e.g. in [3]. We know that using this formulation as well as a simultaneous space-time
discretization has favorable properties regarding stability [4] and model order reduction [2]. This mo-
tivates the application of this setting to the field of PDE-constrained optimization. We have already
shown results regarding the well-posedness and stability of this approach for a non parameterized
version in [1].

Now we want to extend this approach to a parameterized setting. The parameter µ ∈ P can
appear in the constraining parabolic PDE (2) or the objective function (1). The control u is in our
setting not parameter dependent and not regarded as a parameter. Therefore we consider our problem
in a multi-query context, i.e. we want to solve a large number of optimization problems for varying
parameters and therefore have a need for MOR.

In her master’s thesis (2021), Nina Beranek has shown some preliminary results regarding the
decay of the Kolmogorov n-width. Currently Linus Heinzelmann, within his master’s thesis, is working
on an implementation of the MOR to confirm these preliminary results numerically.

Additionally we are currently investigating optimization problems with additional constraints for
the control. The optimal control ū has to fulfill e.g. box constraints of the form ua(t, x) ≤ ū(x, t) ≤
ub(t, x). Regarding the full order optimization problem, we can then solve this high dimensional
problem quite efficiently using a semi-smooth Newton method. However the application of MOR to
these systems is an open problem that we are currently investigating.

In this talk we want to present the results of this ongoing research of applying MOR to the
parameterized PDE-constrained optimization problem in a space-time variational setting with and
without additional control constraints.
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Parametric Proper Orthogonal Decomposition approaches for
high-dimensional design optimization problems

Sebastiaan P. C. van Schie1 and John T. Hwang1
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Proper Orthogonal Decomposition (POD) is one of the most widely-used reduced basis methods
for model reduction. It uses the Singular Value Decomposition (SVD) to find a low-dimensional sub-
space which is optimally close to the span of a data matrix generated by a high-dimensional model.
Despite its attractive approximation properties POD is not inherently suitable for parametric models,
as it does not explicitly take into account the parametric model structure.

Let X denote a data matrix that contains data snapshots Xi from multiple parameter vectors
µi in parameter space P ⊂ Rp, such that X =

[
X1(µ1) . . . Xs(µs)

]
. Standard POD constructs a

single reduced basis for all of P by using all of X. This results in inaccurate and unstable reduced
bases when the model behavior changes significantly over P . Various approaches have been proposed
to make POD more robust and accurate under parameter changes. These include Grassmann manifold
interpolation [1] and clustering data to construct local POD bases on disjoint subspaces that cover P
[2]. While these methods rely only on state information, other approaches use the state sensitivities
as well. Example approaches include adding the sensitivities to a weighted snapshot matrix [3] and
computing the sensitivity of the POD modes under parameter changes [4].

These and other parametric POD approaches in literature perform best for low-dimensional P
and sometimes require an offline data acquisition phase that covers P with data snapshots. This limits
their usefulness for design optimization problems, where high-dimensional P are often of interest. In
this talk we instead focus on parametric POD approaches for high-dimensional optimization problems
without offline phase. We propose a new approach for efficient online weighted POD that avoids
having to recompute the entire SVD when new weights are assigned. Furthermore, we present ways
to incorporate state sensitivities into the parametric POD computation process. We show results for
static and dynamic optimization problems and compare the performance of various parametric POD
models in terms of accuracy and speed.
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Optimal control based reformulation of a data assimilation problem
as a new approach for applying model order reduction methods

J. Marquardt1 and C. Gräßle1

1Institute for Partial Differential Equations, TU Braunschweig, Germany.

The goal of data assimilation is to update a mathematical model with observations from the real
world. In 4D-var data assimilation, the observations yi ∈ Rdobs for 0 ≤ i ≤ N are taken at multiple
time instances 0 = t0 < ... < tN = T < ∞. The current state of the model at time ti is given by
xi ∈ Rd. The forward evolution of the model is governed by some dynamics Mi : Rd → Rd such that
xi+1 = Mi(xi). Further, we introduce the observation operators Hi : Rd → Rdobs . In order to match
the model prediction with the observation, the initial state x0 can be chosen as a solution of

argmin
x0∈Rd

{
J(x0) :=

1

2

N∑

i=0

∥Hi(xi)− yi∥2Rdobs +
α

2

∥∥∥x0 − x
(b)
0

∥∥∥
2

Rd

}
, (1)

subject to
xi+1 = Mi(xi) ∀i ∈ {0, ..., N − 1} (2)

with initial guess x(b)0 and trust coefficient α > 0, which describes how much confidence can be put into
x
(b)
0 compared to the measurements yi. The common solution techniques in data assimilation usually

require the numerical treatment of large systems. Therefore, it is not surprising that the search for
reduced order models is a focus of various contributions (see e.g. [2] for an overview).

In this presentation, we consider data assimilation problems governed by parabolic partial differ-
ential equations and apply a reformulation technique, which allows us to assimilate the data by solving
an elliptic differential equation with e.g. finite elements. The transition between these problems is
based on the interpretation of the data assimilation task as an optimal control problem and the further
utilisation of the arising optimality conditions in order to establish the elliptic system. The presented
reformulation technique is not only limited to data assimilation and and has already been successfully
implemented by other authors for distributed control problems in the past (cf. [1, 3]).

Switching from (1) - (2) to the task of discretising a partial differential equation allows to exploit
new ideas for the reduction of the model’s complexity. Both our results from first approaches of applying
model order reduction to the reformulated system and our investigations for the identification of good
time instances for the incorporation of data to the model will be presented.
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Real-time aerodynamic load estimation for hypersonics via
strain-based inverse maps

Julie Pham1, Omar Ghattas1, and Karen Willcox1

1The University of Texas at Austin

We present an efficient inverse formulation for estimating aerodynamic pressure loads on a hyper-
sonic vehicle using a strain-based sensing strategy and dimension reduction for aerodynamic pressure
fields. Real-time characterization of aerodynamic loads is critical for guidance, navigation, and control
applications. In hypersonic flight environments, direct measurement of these quantities of interest is of-
ten intractable due to the harsh aerothermal conditions. Our work targets the hypersonic environment
by employing strain-based sensing to infer the aerodynamic surface loads from sparse measurements
of the structural strain field. The strain response induced by the aerodynamic loads is governed by
the partial differential equations (PDE) of linear elasticity, leading to a PDE-constrained inference
problem, for which model reduction is often critical for computational tractability [1]. In this work, we
embed the physics in a compressed inverse map, which is a surrogate for enabling real-time estimation.

To construct the inverse map, we pose the inference task as a least-squares problem with a high-
dimensional linear constraint arising from a finite element discretization of the governing PDE [2]. Due
to the linearity of the constraint, a closed-form solution is available via the normal equations, which
provides an inverse map from strain measurements to the aerodynamic pressure quantities of inter-
est. Pre-computation of the least-squares solution (estimator), which comprises the high-dimensional
system matrices, enables a compression of the high-fidelity physics into a reduced inverse map. This
estimator reduces the inverse map via either (1) a low-dimensional parameterization of the surface
pressure field via the proper orthogonal decomposition, or (2) a prior regularization term that elimi-
nates higher spatial-frequency modes of the surface pressure field [2]. We employ a data-driven prior
for regularization, constructed using computational fluid dynamics solutions of the surface pressure
field over a range of flight conditions. Additionally, the analytical covariance of the estimator provides
explicit uncertainty quantification in the presence of sensor noise. Numerical studies are conducted
using the Initial Concept 3.X (IC3X) conceptual hypersonic vehicle. The results demonstrate the esti-
mator performance for surface pressure reconstruction, as well as the corresponding force and moment
coefficients, for a given noise level. We provide a discussion of accuracy, uncertainty, regularization,
and optimal sensor placement for the IC3X testbed problem.
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Surrogate Model Generation in CFD with Machine Learning-Aided
Design Optimization Method (MLADO)
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In engineering applications it is often complicated to find optimal designs, especially in simulation-
based design, due to each computational simulation may take long time to converge. This situation
worsens when the planned design life cycle involves many design parameters, which dramatically in-
creases the number of simulations to achieve an optimal design.

A widely accepted approach in the literature to obtain optimal designs in CFD (Computational
Fluid Dynamics) is to construct surrogate models, which can be later sampled. However, the con-
struction of these surrogates must be smart enough, since brute force leads to inefficient procedures,
especially when the number of design parameters in the optimisation approach is large and thus hun-
dreds or thousands of simulations must be converged to obtain reliable and useful surrogates. In
unsteady engineering problems, each simulation may take from several days to weeks to converge, thus
an efficient and data-driven construction of surrogates is an important advantage.

In this presentation, a proposed solution to this problem is to embed a classification algorithm
(predictor) in the making of the surrogates (may exist more than one for a specific problem), as shown
in Figure 1. This process is supported by the namely Machine Learning-Aided Design Optimization
(MLADO) [1]. The classifier predicts whether the objective feature yields V S = 1 (desired feature) or
V S = 0 (undesired feature). The classifier can be trained with lower-quality data from many possible
sources (ROMs such as SINDy models, low-fidelity simulations on coarse grids, data-bases, etc.) and
then be used to make a surrogate that incorporates the most relevant features and efficiently. The use
of the predictor allows to also explore the design space to reduce its dimension, since the classification
is monitored to see whether the number of V S = 1 is increasing or not by following a parameter
exploration. In addition, if desired, uncertainty estimates can be obtained from these surrogates.
During the talk, we will show successful cases of application of this method to unsteady CFD problems
and discuss what has been done to date, future plans and other potential improvements of the method,
as well as its extension to other scientific problems.
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Figure 1: Framework to improve surrogate models by relying on a classification algorithm (predictor).
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Score-based diffusion models for PDE-based inverse problems
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Despite recent advancement in reduced order and surrogate models, applications in field inversion
[1] - i.e. the task of solving inverse problems for fields rather than parameters - presents a substantial
challenge, especially due to the difficulties in optimizing data matching to accurately represent the
physical phenomena of interest.

This study aims to explore the potential of employing diffusion models, specifically score-based
models [2] for field inversion tasks. In image generation, a similar technique known as inpainting has
proven efficient in approximating data distributions through score matching [2, 3]. Our investigation
into score-based diffusion models is motivated by their ability to model complex distributions. However,
these models often lose physical consistency across simulations. We have developed a method that
enforces physical constraints during the reverse sampling process by evaluating the governing equations
on each cell and has been demonstrated to perform well in a range of scientific machine learning tasks [4].
Although this enforcement does not require evaluation at every sampling step, the associated evaluation
costs may restrict certain applications from obtaining a posteriori field distributions from measured
inputs. We introduce an efficient framework that integrates physical laws and spatial dependence
into the model’s training process, aiming to reduce the computational efforts required for evaluation.
Additionally, we demonstrate the computation of field uncertainty through repetition samplings from
the Gaussian prior. The method is demonstrated in several applications including flow in porous media.
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Gradient-free optimization (GFO) is the optimization approach when the gradient of the objective
function is unavailable, commonly happen in black-box optimizations. Traditional GFO methods that
estimate gradients using finite differences face significant challenges in high-dimensional spaces, as the
number of required function evaluations grows with dimensionality. To address these challenges, Kozak
et al. [1] introduced the Stochastic Subspace Descent (SSD) method, which enhances efficiency by
estimating gradients within a randomly selected subspace. This approach has demonstrated substantial
effectiveness, particularly in cases where the objective function exhibits weak dependence on most of
its inputs—a situation frequently encountered in practice. However, the optimization performance of
SSD, particularly regarding step size selection, remains suboptimal due to unknown variables such
as the Lipschitz constant of the objective function gradient and the projected energy of the effective
objective function onto the subspace.
To overcome these limitations, recent developments have utilized reduced-order or surrogate models,
such as polynomial chaos and deep learning-based surrogates, which offer cost-effective approxima-
tions of the original expensive models while maintaining a consistent performance. Building on these
advancements, this work proposes a novel method that leverages reduced-order surrogate models to
refine the step size selection process through a surrogate-adjusted line search method. This approach
aims to harmonize the efficiency of surrogate models with the robustness of SSD, thereby enhancing
the overall optimization process.
This paper makes several significant contributions to the field of gradient-free optimization:

1. We introduce a novel surrogate-adjusted line search algorithm that utilizes reduced-order surro-
gate models to approximate the optimal step size, effectively addressing the prevalent challenge
of step size tuning in gradient-free optimization.

2. We provide a comprehensive theoretical analysis of the surrogate-adjusted line search algorithm,
which includes a rigorous convergence analysis and a detailed discussion on the trade-offs between
the number of iterations and the accuracy of surrogate construction required for optimal step
size adjustment.

3. We validate the effectiveness of our proposed method through extensive numerical experiments
across various applications. The results confirm the advantages of the proposed algorithm, show-
casing its potential to significantly improve the performance of gradient-free optimization meth-
ods.
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Physics-informed neural networks assisted operator inference
framework for noisy data
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The framework of operator inference is used to build a reduced order model directly from data
and to make use of the knowledge at the level of partial differential equations. However, the operator
inference approach is sensitive to noise and poses a significant challenge, particularly in approximating
the derivative information. In this work, we propose the construction of reduced-order models via
operator inference for noisy data, which is two fold. First, we clean the data by constructing an
implicit neural representation of data such that the output of the implicit neural network is not only
in the vicinity of the noisy measurement but also enforces the known form of the partial differential
equation. Consequently, we obtain denoised data, which, in the next step, is used to construct reduced-
order models via operator inference. The performance of the proposed approach is investigated using
two numerical examples, and a comparison with operator inference applied to low-pass filtered data is
presented.
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Rapid 3D Green’s functions using reduced-order models of
physics-based seismic wave propagation simulations
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Elastodynamic Green’s functions are essential in seismology, and form a connection between direct
observations of seismic waves and earthquake sources. They are key to enabling various seismological
tasks, including physics-based ground motion prediction and kinematic or dynamic source inversions.
In regions with comparably well-constrained 3D models of the Earth’s elastic structure, such as South-
ern California, approximate 3D Green’s functions can be computed using physics-based numerical
simulations of seismic wave propagation. However, these simulations are computationally expensive,
which presents a challenge for real-time ground motion prediction (e.g., ShakeMap and ShakeAlert),
physics-based Probabilistic Seismic Hazard Assessment (PSHA, e.g., CyberShake), and uncertainty
quantification in source inversions. Here, we address this challenge by using a reduced-order model
(ROM) which enables rapid computation of approximate Green’s functions by using the proper or-
thogonal decomposition combined with radial basis function interpolation. We train the ROM using
three-component seismograms for six elementary moment tensors, computed with SeisSol, selecting 500
source locations to calculate 1.0 Hz elastodynamic Green’s functions for approximately 10,000 sites in
southern California. Using leave-one-out cross-validation, we assess the accuracy of our Green’s func-
tions for the SCEC CVM-S4.26-M01 velocity model in both the time domain and frequency domain.
We show that the ROM can accurately and rapidly reproduce simulated seismograms for generalized
moment tensor sources in our 3D region, as well as kinematic sources by using a finite fault model of
the 1987 Mw 5.9 Whittier Narrows earthquake as an example. In these demonstrators, the accuracy is
quantified using the mean absolute error of the velocity waveforms and the Fourier amplitude spectra.
We envision that our rapid Green’s functions would be useful for physics-based PSHA, improving the
uncertainty quantification in earthquake source inversions, and constructing rapid ShakeMovies with
high spatial resolution.
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Construction of nonlinear models from input-output data for
atmospheric pollution simulations

Dimitrios Xylogiannis1, Charles Poussot-Vassal1, and Claire Sarrat1

1Onera-The French Aerospace Lab, Toulouse, France

Atmospheric pollution models are essential for understanding and predicting episodes of high
concentration that may occur in a defined area (e.g., cities, sensitive areas such as industrial sites,
etc.). These models typically involve complex, heterogeneous, and multi-scale dynamics and physical
phenomena, whose simulation results in significant computational time. In order to produce forecasts
and estimate of local air pollution more quickly, it is relevant to develop dynamic reduced order models
that can be quickly and easily used in place of complex and expensive simulators. Typical applications
include observer design, parametric optimization, and potentially closed-loop control design, for which
many query model-based processes are usually needed.

In this work, based on simulation outputs of limited time-domain data, the goal is to construct
nonlinear structured models (e.g. bilinear, quadratic and quadratic-bilinear). The considered time-
domain data consists of input-output pairs based on pollutant dispersion simulations of a real, doc-
umented with observations, event of atmospheric pollution. The proposed methodology aims to con-
struct a nonlinear model in a non-intrusive way. First, from the input-output data we built a linear
model using the Pencil method described in [2]. Due to the large complexity of the model its order
is reduced by applying the Loewner Framework [3]. The states of the identified reduced linear model
are combined with the original input-output data in order to enrich the model structure with nonlin-
ear terms, by solving a least-square problem similar to [1]. Convergence conditions of the proposed
sequential process are provided, thus providing a framework for this configuration setup. Finally, the
conducted simulations and the constructed reduced models are validated through comparison with out-
put observations. Last but not least, the considered setup data will be made available to the research
community.
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Data-driven Model Reduction via Block-structured Operator
Inference for Coupled Aeroelastic Flutter

Benjamin G. Zastrow1, Anirban Chaudhuri1, and Karen E. Willcox1

1The University of Texas at Austin

This work presents a data-driven, physics-informed reduced-order modeling (ROM) approach for
computationally efficient prediction of coupled aeroelastic flutter. We develop a coupled ROM based
on the operator inference method [2] with embedded physics-based knowledge. We use a full-order
model for flutter simulation that couples a high-dimensional computational fluid dynamics (CFD)
solver with a modal decomposition from a finite element model to generate the snapshots. We infer
both the structural dynamics and the fluid dynamics reduced operators via the solution of least squares
problems to learn a block-structured coupled ROM of the form

[
˙̂qs
˙̂qf

]
=

[
0
ĉf

]
+

[
Ãs Êsf

Êfs Âf

][
q̂s
q̂f

]
, (1)

where q̂s and q̂f are the structural and fluid reduced state vectors, ĉf is the constant fluid reduced op-
erator, Ãs is the linear structural dynamics operator, Âf is the linear fluid dynamics operator, and Êsf
and Êfs are the linear coupling operators. We incorporate intrusive knowledge of the structural dynam-
ics operator, Ãs, from the modal decomposition, thus eliminating the need to infer it. The remaining
operators (ĉf, Âf, Êsf, Êfs) are learned non-intrusively. The block structure allows us to effectively com-
bine intrusive and non-intrusive learning for the coupled ROM and enables improved inference of the
coupling and fluid dynamics operators with limited training snapshots. We demonstrate our method
on the AGARD 445.6 wing [3], a canonical large-scale aeroelastic prediction testbed problem. We use
NASA’s FUN3D CFD solver with its aeroelasticity capability [1] to couple the structural and fluid
dynamics to generate our full-order model snapshots.
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Non-intrusive reduced order models for geophysics applications:
Adaptive sampling for the small data regime

Dave A. May1

1University of California San Diego, Scripps Institution of Oceanography, Institute of
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Physics-based models defined by conservation laws are ubiquitous within geophysics, with the
majority being parametric Partial Differential Equations (PDEs). Such PDEs are used in both for-
ward and inverse modelling contexts. In the “forward” context, the objective is often to explore the
parameter-to-observable map so as to: identify and classify dynamical regimes; scaling laws; and or
to conduct a global sensitivity analysis. In the “inverse” context, the objective is typically parameter
estimation, and if adjoint methods are adopted, a by-product is the capability to efficiently perform a
local sensitivity analysis. Whether exploring the parameter-to-observable map, or solving an inverse
problem, many evaluations of the forward model are required, a situation which can be computationally
prohibitive for very large scale simulations. In this work, the many-query scenario is made computa-
tionally tractable by employing a data-driven, non-intrusive reduced order model (ROM) - specifically
the interpolated Proper Orthogonal Decomposition (iPOD).

There are numerous application areas within geophysics where non-intrusive ROMs are highly
beneficial. However, exploiting non-intrusive reduced order models in geophysics appears to be in its
infancy. Here I will present two distinct geophysical applications where iPOD has been successfully
applied. The first application concerns modeling the thermal structure within a subduction zone.
Here the forward model is non-linear and consists of a coupled set of elliptic and parabolic PDEs that
describe viscous flow and the conservation of energy. The second application considers the modeling
of ground motion generated by seismic waves originating from an earthquake. The forward model in
this application consists of the linear elastic wave equation, with a sub-surface 3D velocity model and
topography consistent with Southern California. Despite the highly distinct application contexts and
the PDEs defining the forward model, the iPOD ROM is both accurate and highly efficient.

The offline cost of building these non-intrusive ROMs is non-negligible as the forward models
are computational expensive. In a very practical sense, the number of forward models allowed to
be executed is finite due to the computational resources they require. Hence, in order to minimize
the offline cost, I compare several new techniques for constructing iPOD ROMs adaptively, in which
adaptivity in parameter space is driven by an error estimate of the difference between the high-fidelity
model and the ROM.
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Wavelet-based Dynamic Mode Decomposition in the context of
Extended Dynamic Mode Decomposition and Koopman Theory

C. Tilki1 and S. Gugercin1

1Department of Mathematics, Virginia Tech, Blacksburg, 24061, VA, United States

Dynamic mode decomposition (DMD) [3] is extensively used in data-driven modeling of dynamical
systems where the data is sampled from a dynamical system of the form

ẋ = T (x), x ∈ M ⊆ Rn.

The analytical connection between DMD and the Koopman theory has paved the way for the Ex-
tended DMD algorithm (EDMD) [4]. In simplest terms, EDMD can be considered as constructing an
approximation of the Koopman operator on a finite-dimensional subspace. This subspace is predeter-
mined, mostly by designating the observables ψ : M → CM . In short, given the time-domain data
{x(ti)}Ni=0 ⊆ M, EDMD proceeds by solving the least squares problem

K = argmin
K̂∈CM×M

∥Ψ1 − K̂Ψ0∥2F for Ψj :=
[
ψ(x(tj)) ψ(x(tj+1)) . . . ψ(x(tj+N−1))

]
,

where K inherits a finite-dimensional approximation to the underlying Koopman operator. In practice
choosing good observables ψ is a big challenge. To overcome this problem one can employ strategies
from the signal processing domain and use wavelets as a candidate for these observables. This idea of
incorporating wavelets was proposed in [2] leading to the so-called Wavelet-based DMD (WDMD).

WDMD considers an input-output dynamical system and does not assume access to the state data
x(ti), but only to input-output data {u(ti),y(ti)}. Then by using discrete wavelet transform (DWT)
at the samples of output trajectory y(ti) WDMD obtains auxiliary state variables to perform DMD.

In this work, we prove that the EDMD algorithm with wavelets coincides with a specific case of
WDMD, up to an error introduced by DWT, thus establishing the analytical connection to the Koop-
man theory. This theoretical connection clarifies how WDMD needs to be modified for approximating
non-linear input-output systems. Mainly to have convergence guarantees, one needs to consider bilinear
approximations [1]. One can achieve this by employing linear parameter-varying (LPV) methods. It
has been shown that this framework can be used in the bilinear approximation of the input-parametrized
Koopman operator for the continuous-time dynamical systems [1]. In that vein, we propose a bilinear
generalization of WDMD for guaranteeing convergence properties when the system is control-affine.
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Surrogate modeling for data-scarce applications using
projection-based multifidelity linear regression

V. Sella1, J. Pham1, K. Willcox1, and A. Chaudhuri1

1University of Texas at Austin, TX 78712, USA

Tasks in science and engineering such as uncertainty quantification, risk analysis, optimization,
and sensitivity analysis, that require many queries of an expensive-to-evaluate model, are often hindered
by computational cost constraints. One strategy to alleviate the computational cost burden involves the
development of surrogates, such as linear regression models aimed at approximating outputs from the
high-fidelity model. Nevertheless, accurate surrogate modeling poses a persistent challenge, particularly
in the low data regime for high-dimensional problems. This work presents projection-based multifidelity
(MF) approaches for multivariate linear regression for data-scarce applications with high-dimensional
outputs. We tackle the sparse data issue by projecting the outputs to a lower-dimensional subspace
through proper orthogonal decomposition basis vectors and using information from multiple models of
varying cost and fidelity. The proposed MF linear regression approaches leverage many training data
points from multiple low-cost, lower-fidelity information sources with few training data points from
the high-fidelity source.

We implement and contrast two projection-enabled MF linear regression methods. First, we
show an additive approach based on the Kennedy-O’Hagan [1] framework. Second, we propose a data
augmentation approach that merges both high-fidelity and low-fidelity datasets into a single training
set in two ways: (i) directly using the low-fidelity data and (ii) using an explicit linear regression
mapping between low-fidelity and high-fidelity data. We assign user-defined weights to each dataset
corresponding to the fidelity levels of the models. Subsequently, the multifidelity linear regression
model is trained utilizing weighted least squares. The multifidelty setup using data augmentation
enables the fitting of higher-order polynomials by utilizing the larger sample pool available from the
low-fidelity models along with the high-fidelity data in a single training phase.

We apply the projection-enabled MF linear regression methods to approximate the surface pres-
sure field on a hypersonic vehicle in flight. The projected MF linear regression using data augmentation
outperforms the single-fidelity linear regression in the low data regime of 3− 10 high-fidelity samples
with an improvement in the range of approximately 3− 12% in median accuracy for similar computa-
tional cost with higher accuracy gains for lower number of high-fidelity samples.
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Reduced-order modeling as a catalyst and enabler for digital
twinning in process and chemical engineering

Peter Benner1 and Ion Victor Gosea1

1Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106,
Magdeburg, Germany, email: benner,gosea@mpi-magdeburg.mpg.de

A digital twin (DT) is a digital model of an intended or actual real-world physical product, sys-
tem, or process (physical twin) that serves as the effectively indistinguishable digital counterpart of
it for various practical purposes. In line with advances in many industrial sectors, the confluence of
Industry 4.0 principles, digital transformation initiatives, and the accuracy of mathematical modeling
techniques have collectively triggered an increase in the exploration of DTs in process engineering [1].
The application of DTs offers benefits such as enabling real-time monitoring, facilitating predictive
maintenance through future state prediction, supporting process design and optimization, or improv-
ing control mechanisms. Model order reduction and reduced-order modeling (RoMod) can be viewed as
enabling tools for the construction of reliable DTs. Lowering the complexity of the original system, i.e.,
the number of degrees of freedom, allows for increasing the speed of model execution while maintaining
the required accuracy & predictability. A key feature of most RoMod approaches is the data-driven
aspect, which alleviates the need to explicitly access the (complex) model. These are especially impor-
tant when a large number of evaluations are needed from a complex/large simulation model, which is
required to be continuously updated based on changes in parameters and operating conditions.

In this work, we address the challenge of RoMod of dynamical systems in the field of process
engineering, by employing RoMod and scientific machine learning (SciML) techniques. One method of
interest is operator inference (OpInf) [5], a non-intrusive data-driven method for learning dynamical
systems from time-domain data. The other approach to be applied here is SINDy, which enables the
discovery of governing equations from data by sparse identification of nonlinear systems. By harnessing
some latest developments of these methods [4, 2], robust stable quadratic surrogate models are inferred
directly from data. The test case investigated here is driven by carbon dioxide (CO2) methanation
i.e., the conversion of CO2 to methane, which facilitates the recycling of CO2 emissions and enables
green carbon processing. However, this reaction is strongly exothermic creating a major bottleneck
for dynamic operation. Based on an intricate mathematical model of a reactor, we apply the proposed
methods for real-time collected data and investigate the behavior of the ROMs for different operating
conditions, together with their predictive capabilities [3]. We compare results to other, classical ML
methods and present a detailed conclusion towards the goal of implementing a DT infrastructure.
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Enabling Model Reduction of Meshless Nonlocal Methods

via Modal Reference Spaces
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Meshless nonlocal methods (MNMs) are versatile computational frameworks that enable e�ective mod-
eling and simulation of complex multiphysics phenomena involving large-deforming numerical domains,
e.g., magnetohydrodynamics in astrophysics, free-surface and multiphase �ows in additive manufac-
turing, etc. However, MNM methods can be more computationally expensive than mesh-based coun-
terparts due to their dense and unstructured numerical stencil. Recent progress has been made to
reduce the computational cost of meshless numerical methods by Rodriguez et al. [1] via Projection
Tree Reduced-Order Modeling (PTROM). However, their approach relies on low-dimensional manifold
discovery techniques built for mesh-based methods and assumes non-mixing and structured numerical
topology. Therefore, this approach cannot project dynamics onto a low-dimensional subspace that is
directly discovered from unstructured and mixing numerical points, as illustrated in Figure 1.

Figure 1: Snapshots of �eld variable time evolution (top row) and snapshots of numerical domain time
evolution (bottom row).

The present work focuses on addressing the limitations of PTROM with unstructured data via refer-
ence modal spaces, akin to reference �nite elements. The presented approach is designed to construct
low-dimensional projection maps on reference spaces where a meshless numerical topology can dy-
namically evolve. The proposed projection approach is showcased on smoothed-particle hydrodynamic
simulations with signi�cant numerical point mixing such as natural convection instabilities, vortex
�ows, and surface tension-driven phenomena often seen in multiphase �ows.
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Oblique projection for scalable rank-adaptive reduced-order
modeling of nonlinear stochastic PDEs with time-dependent bases

Hossein Naderi1 and Hessam Babaee1
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Time-dependent basis reduced order models (TDB ROMs) have successfully been used for approx-
imating the solution to nonlinear stochastic partial differential equations (PDEs). For many practical
problems of interest, discretizing these PDEs results in massive matrix differential equations (MDEs)
that are too expensive to solve using conventional methods. While TDB ROMs have the potential
to significantly reduce this computational burden, they still suffer from the following challenges: (i)
inefficient for general nonlinearities, (ii) intrusive implementation, (iii) ill-conditioned in the presence of
small singular values, and (iv) error accumulation due to fixed rank. To this end, we present a scalable
method for solving TDB ROMs that is computationally efficient, minimally intrusive, robust in the
presence of small singular values, rank-adaptive, and highly parallelizable. These favorable properties
are achieved via oblique projections that require evaluating the MDE at a small number of rows and
columns. The columns and rows are selected using the discrete empirical interpolation method (DEIM),
which yields near-optimal matrix low-rank approximations. We show that the proposed algorithm is
equivalent to a CUR matrix decomposition. Numerical results demonstrate the accuracy, efficiency,
and robustness of the new method for a diverse set of problems using both explicit and implicit time
integration methods [1].
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Randomized Local Model Order Reduction for Nonlinear Partial
Differential Equations

M. Whitby 1 and K. Smetana1

1Stevens Institute of Technology

The importance of developing accurate and efficient numerical simulations for large multiscale
systems is apparent in applications such as monitoring the structural integrity of engineering systems
and creating digital twins. Often, these applications require working with complex problems, which
may involve the need for multiple solutions, rapidly varying strongly heterogeneous coefficients, or
geometrically varying domains. In these cases, the implementation of finite elements and finite volumes
can prove to be computationally infeasible or exceed the permissible time frame. Localized model
order reduction (MOR), which includes combinations of domain decomposition, reduced basis, and
multiscale methods, is often used to circumnavigate these issues. Central to this approach is the need
for an efficient and easily implemented methodology for selecting local spaces that yield a (quasi-)
optimally convergent approximation. For linear problems, optimal local approximation spaces are
found by taking the leading left singular vectors of a transfer operator that maps boundary data on
the boundary of the oversampling domain to the respective solution restricted to the target domain
[1, 2]. As this concept of optimality does not transfer to nonlinear operators, we consider the range
of the transfer operator when applied to a bounded set. We may then use a POD or the Greedy
algorithm to construct a (quasi-) optimal reduced space to approximate this set. However, due to
the high-dimensional parameter set (which is the same dimension as the dimension of the high-fidelity
discretization space on the boundary of the oversampling domain) these algorithms suffer from the
curse of dimensionality [3]. Therefore, in this talk, we present and analyze a randomized Greedy
algorithm for the construction of local reduced basis spaces.

.
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Extracting Markovian description of high-dimensional dynamics via
Mori-Zwanzig formalism
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Developed in the context of statistical mechanics, the Mori-Zwanzig (MZ) formalism [1] provides a
rigorous model reduction technique, where only a subset of variables is tracked in time (t). By virtue
of the projection operator (P ), the Liouvillian (L) of the resolved variable (θ) is split according to

dθj
dt

= bj(θ) =

Markovian term︷ ︸︸ ︷
eLtPbj +

Memory integral︷ ︸︸ ︷∫ t

0
e(t−s)LPLes(1−P )L(1− P )Lbjds+

Noise︷ ︸︸ ︷
et(1−P )L(1− P )bj , (1)

where the Markovian term depends only on the current value, the memory depends on the whole history,
and the noise term is orthogonal to the projected space. The latter requires the full knowledge of the
system. Even though formally well defined, the memory integral is the main computational bottleneck
of the MZ formalism. Its computational cost is similar to that of the original high-dimensional system
and its explicit computation involves solving the orthogonal dynamics [1]. As a consequence, the
memory integral has been approximated by different approaches [1] (see Fig.1). However, there is still
lack of flexible and reliable computational treatment of the memory integral, hindering the applicability
of the MZ formalism for high-dimensional systems. To tackle this challenge, in this study, we reduce

(a) (b)

Figure 1: Application of the MZ formalism to a Kuramoto model using different approximations for the memory
integral and orthogonal dynamics generated by (1−P )L. (a) Evolution of the resolved variable θi, (b) Memory
integral. Exact solution (blue), weak interactions limit (black), pseudo-orthogonal dynamics [1] (orange).

the corresponding computational cost by transforming the generalized Langevin system (1) into a
quasi-Markovian one by exploring two paths: a) we derive a cascade of MZ equations for the successive
memory kernels until the contribution of the kernel can be neglected; and b) we leverage the idea of
dynamic low-rank approximation in order to contain the memory kernel arising from the conditional
expectation projector P . This results in an optimization problem aiming to look for the optimal
transformation, while minimizing the memory integral in the transformed space.
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Linear and Non-linear Reduced Dimensional Manifolds for Global
Weather Predictions
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Weather prediction poses significant challenges due to the complex and chaotic nature of at-
mospheric dynamics. While advanced AI models have shown promise in this area [1, 2], they often
require extensive computational resources and training time. In this work, we explore alternatives to
large Neural Operator/Transformer-based models by extracting reduced dimensional manifolds and
inferring time-evolving operators on these manifolds. Dimensionality reduction techniques that we
explored include Proper Orthogonal Decomposition, Convolutional Autoencoders, and different types
of hybrid architectures. To further enhance the model’s capability, we augment the state space with
time-delayed states. Our approach, tested on the ERA5 benchmark data [3], shows promising results
in predicting the dynamics for short-range weather forecasts (about 5 days), though challenges persist
with medium-range predictions, as with existing approaches.

Particularly, our study highlights the effectiveness of a simple linear time-delayed model, as more
advanced neural operator/transformer-based architectures offer only marginally better accuracy while
imposing a computational burden that is several orders of magnitudes larger. We also observed that
projection error is the primary contributor to the overall prediction error, indicating that the inference
error is a relatively small contributor.

These findings suggest that, with further refinement, our framework could serve as an efficient base
predictor for weather systems with the residuals being potentially modeled using modern, heavy-duty
machine learning architectures. Our work also reinforces the notion that modern ML/AI architectures
require better baselines to demonstrate accuracy and effectiveness, and can potentially greatly benefit
from simple structures imposed on the architectures.
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ML based surrogate modeling for collisional radiative model in
plasma disruption mitigation

Xuping Xie1, Qi Tang1, and Xianzhu Tang1

1Los Alamos National Laboratory

Collisional-radiative (CR) models describe the atomic processes in a plasma by tracking the population
density in ground and excited states for each charge state of the atom/ion. These models predict
important plasma properties such as charge state distributions and radiative emissivity and opacity.
Accurate descriptions of the CR balance of the plasma are essential in fusion whole device modeling,
especially when significant impurities are introduced into the plasmas. In a coupled plasma and CR
simulation, the CR model, which is a high-dimensional ODE, is solved on each grid point for the
plasma solver, and can overwhelm the plasma simulation cost. In this work, we introduce a machine
learning (ML) based method that discovers a latent space and learns its corresponding reduced order
modeling (ROM) dynamics that can capture the essential physics to make accurate predictions of the
quantities of interest, at much reduced online computational cost.
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Figure 1: Trajectory prediction from the learned latent dynamics of the CR model
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Predicting dynamics in time and parameter space with deep
learning and data augmentation

Shuwen Sun1, Lihong Feng1, and Peter Benner1,2
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Analyzing dynamics of a system by numerically solving a large parametric nonlinear dynamical system
is challenging due to its high complexity and the high computational costs involved. Conventional
model order reduction (MOR) based on projection relies on the full knowledge of the system and
its dynamical behaviour. Non-intrusive or data-driven MOR methods extend their applicability in
various situations. In recent years, machine learning-aided MOR methods are being actively researched
[2, 1]. Solely based on data, a nonlinear mapping between the physical and the reduced space can be
constructed via neural networks (NNs). However, many methods fail in accurate generalization in the
whole time interval [0, T ], when the training data is available only in a training time interval [0, T0],
with T0 < T .
To achieve better extrapolation in time domain, we propose two new frameworks by combining kernel
dynamic mode decomposition (kDMD) [3] with neural networks. In the first basic framework, the
convolutional autoencoder (CAE) is responsible for compressing the data into a latent space. Mean-
while, a feed-forward neural network (FFNN) learns the latent variables from the physical parameters
and time. CAE-FFNN is trained in the training time interval [0, T0]. At the online stage, FFNN first
learns the latent dynamics in [0, T0] at any testing parameter, then passes them to kDMD for dynamics
evolution in the out-of-training time period (T0, T ]. The decoder then reproduces physical dynamics in
the whole time interval [0, T ]. This framework, referred to as CAE-FFNN-kDMD, can predict nonlin-
ear parametric dynamics quickly and accurately. The second framework aims to further enhance the
extrapolation capability of the first framework. During the training stage, kDMD derives the latent
variables in (T0, T ] based on the latent data in [0, T0] obtained from the encoder. The decoder is used
to recover the physical dynamics from the latent variables in (T0, T ]. Those recovered physical data in
(T0, T ] are combined with the original training data in [0, T0] to retrain CAE-FFNN without regenerat-
ing any new data in (T0, T ] from the original model. During the online prediction, this retrained FFNN
is only combined with the retrained decoder for more accurate time-domain generalization. These two
frameworks are tested on two examples: a FitzHugh-Nagumo model and a model of incompressible
flow past a cylinder. Numerical results show their promising prediction performance in both the time
and the parameter domain.
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Wasserstein-robust modeling of multi-scale systems:
A Graph-Neural-Network coreset approach

R. Dakhmouche1, 2, I. Lunati2, and H. Gorji2
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Learning the effective dynamics of multi-scale systems is a powerful approach to trade-off between
model fidelity and computational cost, as recently demonstrated for regular geometries [2]. Yet,
more complex settings with unstructured discretizations, and presence of noise, require more tai-
lored schemes. We devise a model reduction approach leveraging time-varying Graph Neural Net-
works (GNNs) to address these challenges. Our scheme integrates a Bayesian coreset algorithm to
down-sample the discretization graph in an adaptive probabilistic way. This leads to a multi-scale
embedding of the spatial-features, which can then be efficiently evolved in time using recurrent neural
networks. The model is trainable in an end-to-end fashion allowing improved feature learning. Besides,
to enhance the robustness of the proposed model, we leverage a distributionally robust loss [1] given
by

L(θ) = sup
Q∈P̂N

EQ [
(Y − fθ(X))2

]
,

where θ ∈ Rp is the training parameter and P̂N is the 2-Wasserstein ball centered at the empirical
distribution of the training data µ̂(X,Y ). As shown in Figure 1, the robustness of the Wasserstein metric

Figure 1: Distance between estimated and ground-truth data distribution in Kuramoto dynamic.

in comparison to the standard Euclidean L2 norm motivates the training via the Wasserstein distance.
We validate the performance of the approach on two canonical models: the Kuramoto system of ODEs
and an advection fluid model around a circular cylinder. Additionally, we provide a comparison against
a single-scale GNN baseline.
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Forward Model Emulator for Atmospheric Radiative Transfer Using
Gaussian Processes And Cross Validation

Otto Lamminpää1, Jouni Susiluoto1, Jonathan Hobbs1, James McDuffie1, Amy Braverman1,
and Houman Owhadi2
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Remote sensing of atmospheric carbon dioxide (CO2) carried out by NASAâs Orbiting Carbon
Observatory-2 (OCO-2) satellite mission and the related Uncertainty Quantification (UQ) effort in-
volves repeated evaluations of a state-of-the-art atmospheric physics model. The retrieval, or solving an
inverse problem, requires substantial computational resources. In this work, we propose and implement
a statistical emulator to speed up the computations in the OCO-2 physics model. Our approach is
based on Gaussian Process (GP) Regression, leveraging recent research on Kernel Flows ([1]) and Cross
Validation to efficiently learn the kernel function in the GP. We demonstrate our method by replicating
the behavior of OCO-2 forward model within measurement error precision, and further show that in
simulated cases, our method reproduces the CO2 retrieval performance of OCO-2 setup with orders of
magnitude faster computational time. The underlying emulation problem is challenging because it is
high dimensional. It is related to operator learning in the sense that the function to be approximated
is mapping high-dimensional vectors to high-dimensional vectors. Our proposed approach is not only
fast but also highly accurate (its relative error is less than 1%). In contrast with Artificial Neural
Network (ANN) based methods, it is interpretable and its efficiency is based on learning a kernel in
an engineered and expressive family of kernels.
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An application of a posteriori error quantification for
physics-informed neural networks

B. Hillebrecht1 and B. Unger1

1SimTech, University of Stuttgart

Modeling a system by a physics-informed neural network (PINN) is beneficial compared to using
a purely data-driven neural network because it incorporates a priori knowledge about the system
dynamics. This a priori knowledge and the extended network training strategy can also be used to
develop an a posteriori error estimator of the neural network prediction [1, 2]. Technical details aside,
this means in particular that for a system governed by the abstract linear differential equation

ẋ(t) = Ax(t),
x(0) = x0,

with the PINN-determined solution denoted by x̂(t) the prediction error of the PINN can be estimated
by the following formula

∥x̂(t)− x(t)∥ ≤M∥x0 − x̂(0)∥eωt +
∫ t

0
Meω(t−s)∥ ˙̂x(t)−Ax̂(t)∥ ds.

All terms containing the norm on the right-hand side can be determined without knowledge of the
solution of the original system. However, the system-dependent parameters M and ω can only be
determined by understanding the original operator semigroup S(t) generated by A. This information
is conventionally not accessible or determined for real-world problems goverened by PDEs.

To overcome this, we extend the Trotter-Kato approximation theorem [3] to derive the parameters
M,ω from finite dimensional approximations. We perform an additional extension of the theorem
which incorporates control operators to compute the parameters describing the impact of errors in the
boundary condition on the prediction accuracy of the neural network.

We illustrate the results using an application which is governed by a PDE on a complex geometry.
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Neural latent dynamics models
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Solving differential problems using full order models (FOMs), like the finite element method, incurs
prohibitively computational costs in real-time simulations and multi-query routines. Reduced order
modeling aims at replacing FOMs with reduced order models (ROMs), that exhibit significantly reduced
complexity while retaining the ability to capture the essential physical characteristics of the system.
In this respect, the novel concept of the Latent Dynamics Problem (LDP) is introduced and the class of
Latent Dynamics Models (LDMs), along with their specialized deep learning counterpart, Neural Latent
Dynamics Models (NLDMs) is presented. NLDMs constitute a neural differential equations-based
model architecture designed for continuous-time modeling. This architecture is embedded within a
reduced order modeling framework, with the primary objective of capturing the latent, low-dimensional
dynamics of high-dimensional dynamical systems.
In a series of numerical experiments, the effectiveness of NLDMs in addressing challenging problems
is demonstrated, particularly in the context of large-scale high-fidelity models governed by time-
dependent parameterized PDEs. The results not only underscore the remarkable performance of
NLDMs but also highlight their potential as a valuable tool for understanding and modeling com-
plex dynamic systems.
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The detection and characterization of structural defects in gas pipelines, such as welding in-
consistencies, pitting, and both localized and general corrosion, present significant challenges in the
maintenance and operation of these critical infrastructures. Traditional methodologies for inspect-
ing such defects often rely on ultrasonic guided wave propagation techniques, which, while effective,
are hampered by the complexity of conducting comprehensive experimental studies across the myriad
conditions encountered in operational pipelines. The necessity to generate extensive datasets for the
training of artificial intelligence (AI) models for corrosion detection exacerbates these challenges, as
creating simulations that accurately reflect the diverse and complex nature of pipeline defects demands
considerable computational resources and time. Addressing these challenges necessitates an innovative
approach that can circumvent the computational bottlenecks associated with conventional simulation-
driven AI training methods. Physics-informed machine learning (PIML) emerges as a transformative
solution, offering a framework that integrates domain-specific physical laws directly into the learning
process.The implementation of a Physics-Informed Machine Learning (PIML) framework, despite its
initial higher financial investment, presents a singular expenditure for the designated domain, enabling
rapid inference capabilities that can encompass a broad spectrum of scenarios. These scenarios notably
include various forms of corrosion across different locales. In this context, the introduction of Physics-
Informed Neural Operators, as pioneered by [1], marks a significant advancement. This novel approach
has been adeptly applied within the current study to emulate the propagation of ultrasonic guided
waves in gas pipelines, a critical component in identifying a range of physical anomalies. Moreover,
this work endeavors to build upon the previous work conducted by [2], which utilized Finite Element
Modeling (FEM) to explore similar phenomena. By integrating more sophisticated physics-informed
neural operators, our study not only extends but also enhances the existing framework, providing a
more robust and efficient computational model. Experimental validation is also carried out for the
developed surrogate model. The surrogate model is trained on a range of physical defects with varying
degrees of location and type of corrosion. The generated datasets from surrogate model were compared
and found to be in excellent agreement with datasets generated from standard finite element based
simulation framework. The cost of surrogate model is found to be at a fraction of simulations costs.
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SurMoDeL: A Deep Learning based Surrogate Model for modeling
fault activation
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Robust geomechanical modeling is necessary to assess the safety and environmental implications
of subsurface resource exploitation and management. Predictability is, however, compromised by
uncertainties arising from model assumptions, variability of the governing parameters, and inaccuracies
in the data. To solve this problem, sensitivity analysis and uncertainty quantification are crucial.
Inverse modeling and stochastic data assimilation techniques can provide reliable outcomes in the
absence of direct measurements, but the computing cost may become unaffordable when modeling
fault activation, since it involves the solution of complex and large-scale problems [1].

A proxy model based on Neural Networks (NNs) is created to approximate the geomechanical
outcome in a faulted reservoir application. The aim is to simulate the beginning of fault slippage that
could result in an induced seismic event, by utilizing in-situ observations of the seismic moment [2].
A deterministic forward geomechanical model is used to create a set of snapshots on which the Deep
Learning based Surrogate Model (SurMoDeL) is trained. The SurMoDeL turned out to accurately
simulate the outputs of interest, hence to be useful for multi-query or real-time applications where quick
estimation is essential. Indeed, what makes NNs effective in this context is their ability to approximate
even discontinuous functions, which are required to represent the displacement field in fault activation
modeling. Moreover, SurMoDeL physical consistency can also be guaranteed by requiring predictions
to follow physical rules and/or imposing physics-awareness on the model. After training and validation,
the proxy model is applied in order to reduce uncertainty on input parameters by means of seismic
data assimilation.

This work aims to integrate deep learning with traditional modeling approaches in order to de-
crease uncertainty in reservoir simulations, improve prediction reliability, and enable robust simulations
for design and optimization.
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Numerous complex phenomena in the realms of technology and science require the solution of ex-
pensive, high-dimensional systems of partial differential equations (PDEs). Reduced order models
(ROMs) have been developed to overcome this issue and accelerate the calculations [2, 4]. In sce-
narios involving experimental measurements or constrained access to full-order solvers, non-intrusive
reduced-order modeling techniques offer a solution. However, these methods often lack interpretability
and uncertainty quantification (UQ) of the predicted solutions.
Consequently, we present a data-driven, non-intrusive reduced order modeling scheme that identifies
the latent dynamics in an interpretable manner while it inherently embeds UQ. Utilizing a limited
dataset with high-dimensional noisy data, our proposed framework employs variational autoencoders
for dimensionality reduction and a variational adaptation of sparse identification of nonlinear dynamics
(SINDy) [1, 3, 2] to proficiently construct ROMs.
In detail, the method consists of Variational Encoding of Noisy Inputs (VENI) to identify the distri-
bution of reduced coordinates. At the same time, we introduce Variational Identification of Nonlinear
Dynamics (VINDy) to learn the distribution of coefficients determining the contribution of terms from
a predefined set of candidate functions. Following the offline training, the identified model can be
queried for new parameter instances and/or new initial conditions in order to calculate the corre-
sponding full-time solutions. The probabilistic framework inherently facilitates UQ, as online testing
involves Variational Inference that naturally provides Certainty Intervals (VICI). The performance of
the proposed method is validated on a diverse set of PDE benchmarks including structural mechanics
and fluid dynamics.
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Introduction: The computational intensity of Full Order Models (FOM) for field-scale parame-
ter estimation, optimization, and real-time control in subsurface modeling necessitates an alternative
approach to manage computational demands effectively. Reduced Order Models (ROM) emerge as a
viable solution, providing a simplified yet efficient means to approximate complex systems. However,
their utility in large-scale industrial applications is often hampered by the extensive computational
resources required, especially when machine learning (ML)–based ROMs are employed. This challenge
is predominantly due to the need to account for each degree of freedom (DOF), which corresponds to
the discretization of the problem domain and serves as input features, thereby exponentially increasing
the computational load as the computational domain expands.

Methodology: Addressing the computational bottleneck, we introduce the Improved Neural Op-
erator (INO) [1], a neural operator framework designed to enhance the performance of ROMs in
large-scale settings. The INO approach involves a strategic division of the computational region into
smaller, manageable subdomains during the training process, significantly reducing the size of training
sets and, consequently, the computational overhead. This method efficiently handles multiple DOFs
with high accuracy, even when operating within a limited subset of the computational domain. A
practical application of INO to the Illinois Basin - Decatur Project underscores its effectiveness, where
it achieved an average relative error of less than 1 % in pressure predictions with a relatively small
training set of 90 samples over four years of geological carbon storage operation.

Challenges and Innovations: Despite its proven efficacy, the INO model encounters limitations
in capturing global phenomena due to its subsampling strategy, which might overlook the extensive
connectivity and complexities within geological fields. Specifically, the reliance on localized states
during the training phase restricts the model’s ability to comprehensively understand and predict
behaviors across an entire heterogeneous permeability field. To surmount this challenge, we propose
the integration of Graph Convolutional Networks (GCNs) with the INO framework. GCNs utilize
graph structures to represent intricate relationships within the data, such as those in heterogeneous
permeability fields, thereby enhancing the model’s capacity to incorporate global impact factors while
still benefiting from localized training samples.

Contribution: The proposed integration of GCNs with the INO model marks a significant ad-
vancement in the modeling of geological storage phenomena, enabling a more nuanced, accurate, and
computationally efficient representation of complex subsurface environments. This breakthrough can
transform the landscape of large-scale geological storage modeling, offering a scalable, accurate, and
resource-efficient solution for the industry.
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Spatial domain reduction theories [1] aim to reduce partial di�erential equations (PDEs) in high-
dimensional spatial domains to those in lower�dimensional spatial domains. Within spatial domain
reduction theories, there is theoretical analysis concerning the errors present in the solutions of the
original PDE and the those of the spatially reduced PDE.

In this research, we propose and analyze a surrogate model with reduced learning costs and en-
hanced interpretability by leveraging spatially reduced partial di�erential equations as the dynamics
within the latent space. The learning outcomes of the proposed model exhibit a clear structure com-
prising the �core spatially reduced PDE approximations" and �small-error neural networks," enhancing
the interpretability of the results. In the presentation, we will explain the structures of proposed
surrogate model and show some learning results.
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Subduction zones can host large earthquakes, which are capable of causing strong ground shaking and
generating tsunamis. Physical models are used to better understand subduction zones processes and
potential hazards. These physical models are typically computationally intensive and simulate many
parametrized physical processes. Since the parameters describing these processes are representing
characteristics of the deep Earth, they are naturally uncertain. Quantifying the effects of variability in
model input parameters on output quantities of interest is key to understanding subduction zones and
earthquake hazard. The challenge lies in the combination of a large parameter space to explore and the
computational expense of the models. To address this challenge, we build reduced-order models using
the interpolated Proper Orthogonal Decomposition (iPOD) [2, 5, 3, 1, 4]. We interpolate the POD
coefficients using radial basis function (RBF) interpolation [6]. This method is non-intrusive, requiring
no modification of the forward model code, so our framework can be readily applied to different
forward models simulating a variety of physical processes in subduction zones. iPOD is also a data-
driven method, so it is suitable to apply to nonlinear problems. The ROMs are 104−105 times faster to
evaluate than the forward model, making robust global sensitivity analysis (SA) tractable. We apply
this combined ROM and SA methodology to several geophysical problems of interest, including thermal
models of subduction zones and simulations of dynamic rupture during earthquakes. Given reasonable
variability in model input parameters, we quantify the variability in geophysically important quantities
such as the thermally-inferred width of the seismogenic zone, the moment magnitude of earthquakes,
pressure-temperature conditions along slab interfaces, and characteristics of dynamic rupture during
an earthquake.
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Propagation of Uncertainties in Data-driven Learning of ODEs

Aniket Jivani1 and Xun Huan1

1Department of Mechanical Engineering, University of Michigan

There have been a number of developments in learning surrogate models and/or reduced order
models of systems described by ODEs/PDEs (e.g. [5], [4] [6]) from observed or simulated snapshots
of quantities of interest (QoIs). These need to go hand in hand with techniques for uncertainty
quantification (UQ), especially for expensive experiments or forward model evaluations that may arise
in critical applications such as space weather forecasting. The UQ aspect is critical for evaluating and
improving the predictive performance of surrogate models and enabling parameter inference among
other downstream tasks. Some post-hoc techniques calibrate heuristic estimates of the uncertainty to
provide model-agnostic valid prediction intervals on otherwise deterministic outputs [7]. In contrast,
recent works ([8], ([2], [9]), non-exhaustive list) and extensions of these have focused on a Bayesian
treatment combined with known / data-learnt dynamics. These explored variational inference (VI)
and Gaussian Process (GP) based-methods to enable UQ.

However, adopting such methods of uncertainty propagation remains challenging for applications
with limited high-dimensional, parametrized spatiotemporal data, where extrapolation in time is desir-
able and inference of the true system parameters may be of interest for designing future experiments.
In this work, we focus on using neural ordinary differential equations (NODEs) [1] as a surrogate
model to approximate the dynamics. Specifically, we build parametrized NODEs [3] and propagate
uncertainties on an exemplar problem in this setting.
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Measure Transport and Density estimation via Surrogate Models

A. Sagiv1

1Faculty of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel

Uncertainty propagation accounts for the effect of uncertain parameters in an otherwise deterministic
model. Traditionally, the analysis of surrogate models in this context is done through the lens of
moment approximation, or conversely, L2 approximation. However, in many applications, the "full
statistics" are required, i.e., we wish to approximate the probability density function (PDF) of the
quantity of interest. In this talk, we will identify the fundamental mathematical problem underlying
this computational task: if two "similar" functions pushforward the same measure, would the new
resulting measures be close, and if so, in what sense? We will show how the PDF of the quantity of
interest can be approximated, using a spline-based method [2] and then using more popular spectral
methods [4], both with theoretical guarantees. We will then present an alternative viewpoint: through
optimal transport theory, a Wasserstein-distance formulation of our problem yields a much simpler and
widely applicable theory [3]. Finally, we will see how these ideas are crucial in the analysis of another
core task in UQ - sampling and generative modeling [1].
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